Programming Languages and
Compilers (CS 421)

Elsa L Gunter

2112 SC, UIUC
https.//courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

2/12/23

https://courses.engr.illinois.edu/cs421/sp2023

i Forward Recursion: Examples

let rec double_up list =
match list

->|_(x ::|double_up xs};;
val double“up : 'a list - >1 alist = <

| Base Case | | Operator || Recursive Call|
let rec poor_rev list =

match list

with [] ->

(x::x?/->\ let r = poor_rev xs in r{@ [x];; |
val poor_rev : a list -> 'a list =
Base Case | | Operator || Recursive Call|

2/12/23

i Recursing over lists

let rec fold_right f list b =
match list @ N\
with []-> b The Primitive
| (X :: xs) -> f x (fold_right f xs b);; Recursion Fairy

val fold_right : ('fa->'b->'b)->"alist->'b->"b =

<fun>
fold_right
(fun s -> fun () -> print_string s)
[Ilhill; Iltherell]
;7

therehi- : unit = ()

2/12/23 3

i Forward Recursion: Examples

let rec double_up list =

match list
with [] -
| (x i xg) ->[(x :: x ::|double_up xs);;
val double“up : 'a list ->{'a list = <
| Base Case | | Operator || Recursive Call|

let double_up =

fold_right (fun x -> fun r -> Iist
[Operator] [Recursive resulf] [Base Case|

double_up [Ilall;llbll];;
_ : String IiSt — ["all; llall; llbll; llbll]

2/12/23

i Folding Recursion : Length Example

let rec length list = match list
with []-> 0 (* Nil case *)
| @ :: bs->1 + length bs;; (* Cons case *)
val length : "a list -> int = <fun>
let length list =
fold_right (funa->funr->1 +r) list 0;;
val length : "a list -> int = <fun>
length [5; 4; 3; 2];;
-:int=4

2/12/23

i Encoding Forward Recursion with Fold

let rec multList_fr list =

ACT 2

2/12/23 7

¥

m let rec multList fr list =
match list

with [] -> 1
| (X::xs) -> let r = (multList_fr ns) in
(X *)

2/12/23

i Folding Recursion

= multList folds to the right
= Same as:

let multList list =
List.fold_right
(fun x -> fun p -> X * p)
list 1;;
val multList : int list -> int = <fun>
multList [2;4;6];;
- 1 int = 48

2/12/23

2/12/23

Extra Material

10

i Encoding Forward Recursion with Fold

let rec append listl list2 =

val append : 'a list -> "a list -> 'a list = <fun>

2/12/23 11

i Encoding Forward Recursion with Fold

let rec append listl list2 = match listl with

val append : 'a list -> "a list -> 'a list = <fun>

2/12/23 12

i Encoding Forward Recursion with Fold

let rec append listl list2 = match listl with
[]-> list2
val append : 'a list -> "a list -> 'a list = <fun>

2/12/23 13

i Encoding Forward Recursion with Fold

let rec append listl list2 = match listl with

[]->]list2
val append : 'a list -> "a list -> 'a list = <fun>

| Base Case |

2/12/23 14

i Encoding Forward Recursion with Fold

let rec append listl list2 = match listl with
[]->|list2 || x::xs ->
val append : 'a list -> "a list -> 'a list = <fun>

| Base Case |

2/12/23 15

i Encoding Forward Recursion with Fold

let rec append listl list2 = match listl with
[1->|list2 || x::xs -> x :: append xs list2;;
val append : 'a list -> "a list -> 'a list = <fun>

| Base Case |

2/12/23 16

i Encoding Forward Recursion with Fold

let rec append listl list2 = match listl with
[]->|list2 || x::xs ->|x ::|append xs listd;;
val append : ‘a list -> "a/list -> "a\lis\t= <fun>

| Base Case | |Operation || Recursive Call|

2/12/23 17

i Encoding Forward Recursion with Fold

let rec append listl list2 = match listl with
[]->|list2 || x::xs ->|x ::|append xs listd;;
val append : ‘a list -> "a/list -> "a\lis\t= <fun>

| Base Case

| Operation || Recursive Call |

let append listl list2 =
fold_right (fun x -> funy -> list1| list2;
val append : 'a list -> "a list -> 'a list = <fun>

2/12/23 18

i Encoding Forward Recursion with Fold

let rec append listl list2 = match listl with
[]->|list2 || x::xs ->|x ::|append xs listd;;
val append : ‘a list -> "a/list -> "a\lis\t= <fun>

| Operation || Recursive Call |

| Base Case

let append listl list2 =
fold_right (fun x -> fun y -> list1| list2;;

val append : 'a list -> 'a list -> 'a list = <fun>

append [1;2;3] [4,5;6];;

-intlist = [1; 2; 3; 4; 5; 6]

2/12/23 19

i Terminology

= Available: An operation that can be executed
by the current expression

= The fastest way to be unavailable is to be
guarded by an abstraction (anonymous

function, lambda lifted).

- |f Mthen.else (X + g X)

- |fthen (fun x -> f x) else((g (x + X))
*

Not available

2/12/23 20

i Terminology

= Tail Position: A subexpression s of
expressions e, which is available and such
that if evaluated, will be taken as the value
of e
« if (X>3) then|x + 2|else|x -4 |
= letx=g5in[x + 4]

= Tail Call: A function call that occurs in tail
position

« if (h x) then[f x]else|(x + g X)]

2/12/23 21

2/1

2/23

End of Extra Material

i Terminology

= Available: A function call that can be
executed by the current expression

= The fastest way to be unavailable is to be
guarded by an abstraction (anonymous

function, lambda lifted).

- |f Mthen.else (X + g X)

- |fthen (fun x -> f x) else((g (x + X))
*

Not available

2/12/23

i Terminology

= Tail Position: A subexpression s of
expressions e, which is available and such
that if evaluated, will be taken as the value
of e

« if (X>3) then|x + 2|else|x -4 |
= letx=5in[x+ 4]
= Tail Call: A function call that occurs in tall
position
« if (h x) then[f x]else|(x + g X)]

2/12/23 24

i Tail Recursion

= A recursive program is tail recursive if all
recursive calls are tail calls

= Tail recursive programs may be optimized to
be implemented as loops, thus removing the
function call overhead for the recursive calls

= Tail recursion generally requires extra
“accumulator” arguments to pass partial
results

= May require an auxiliary function

2/12/23 25

i Tail Recursion - length

= How can we write length with tail recursion?
let length list =
let rec length_aux list acc_length =
match list
with [] -> acc_length
| (X::xS) ->
length_aux xs (1 + acc_length)
in length_aux list 0

2/12/23 26

2/12/23

Extra Material

28

i Your turn: num_neg — tail recursive

let num_neg list =

2/12/23 29

i Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =

INn num_neg_aux ? ?

2/12/23 30

i Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with [] ->
| (X :: XS) ->

INn num_neg_aux ? ?

2/12/23 31

i Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with [] -> curr_neg
| (X :: XS) ->

INn num_neg_aux ? ?

2/12/23 32

i Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with [] -> curr_neg
| (X :: XS) ->
num_neg_aux xs ?

INn num_neg_aux ? ?

2/12/23 33

i Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with [] -> curr_neg
| (X i: XS) ->
num_neg_aux Xs
(if x < 0 then 1 + curr_neg
else curr_neg)
INn num_neg_aux ? ?

2/12/23 34

i Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with [] -> curr_neg
| (X i: XS) ->
num_neg_aux Xs
(if x < 0 then 1 + curr_neg
else curr_neg)
in num_neg_aux list ?

2/12/23 35

i Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with [] -> curr_neg
| (X i: XS) ->
num_neg_aux Xs
(if x < 0 then 1 + curr_neg
else curr_neg)
in num_neg_aux list 0

2/12/23 36

2/1

2/23

End of Extra Material

i Tail Recursion - length

= How can we write length with tail recursion?
let length list =

let rec length_aux list acc_length| =

match list |‘5ccumu|ated value;
with [] -> acc_length
| (X::xs) -> |

length_aux xSl +l acc length)
in Iength_aw@

linitial acc value| [combing operation|

2/12/23 38

i Iterating over lists

let rec fold_left f a list =
match list
with [] -> a
| (x :: xs) -> fold_left f (f a x) xs;;
val fold_left: ('a->'b->"'a)->'a->'blist->"'a =
<fun>
fold_left
(fun () -> (fun s -> print_string s))
()
["hi"; "there"];;
hithere- : unit = ()

2/12/23

39

i length, fold_left

let length list =
fold left
(fun acc -> fun x -> 1 + acc)
0
list

2/12/23

40

2/12/23

Extra Material

41

i Your turn: num_neg, fold_left

let num_neg list =

fold left
?

2/12/23

42

i Your turn: num_neg, fold_left

let num_neg list =

fold left
?

2/12/23

43

i Your turn: num_neg, fold_left

let num_neg list =
fold_left
(fun curr_neg -> fun x ->
if x < 0 then 1 + curr_neg else curr_neg)

2/12/23 44

i Your turn: num_neg, fold_left

let num_neg list =
fold left
(fun curr_neg -> fun x ->
if x < 0 then 1 + curr_neg else curr_neg)

list

2/12/23 45

2/1

2/23

End of Extra Material

2/12/23

Extra Material

48

i poor_rev — forward recursive

let rec poor_rev list =
match list with [] -> []
| (X :: XS) -> poor_rev Xs @ [X]

2/12/23

49

i Tail Recursion - Example

let rec rev_aux list revlist =
match list with [] -> revlist
| X i1 XS -> rev_aux Xxs (X::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

let rev list = rev_aux list [|;;
val rev : 'a list -> 'a list = <fun>

= What is its running time?

2/12/23

50

i Comparison

= poor_rev [1;2;3] =

= (poor_rev [2;3]) @ [1] =

= ((poor_rev [3]) @ [2]) @ [1] =

= (((poor_rev[]) @ [3]) @[2]) @[1] =
« ([JO@[3]) @[2]) @ [1]) =

= ([3]1@[2]) @ [1] =

= B ([]@[2]) @[1] =

x [3;2] @ [1] =

= 3 ([2] @[1]) =

e 320 ([1@[1]) =1[3; 2; 1]

2/12/23

51

i Comparison

mrev[1;2;:3] =

rev_aux
rev_aux
rev_aux
rev_aux

2/12/23

1;2;3]1[1=
2;3] [1] =
3] [2;1] =

1103;2;1] =[3;2,1]

52

i Folding - Tail Recursion

- # let rev list =
fold left
(funl->funx->x::1) //comb op
[] //accumulator cell

list

2/12/23 53

2/1

2/23

End of Extra Material

i Folding

let rec fold_left f a list = match list
with []-> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left: ('a->'b->'a)->'a->'blist->"'a =
<fun>

fold_left f a [Xy; X5;...;%,] = f(...(f (f @ X{) X5)...)X,,

let rec fold_right f list b = match list
with[]-> b | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a->'b->'b)->"alist->'b->'b =
<fun>

fold_right f [Xy; X5;...;%,] b = f x4(f X5 (...(F X, D)...))

2/12/23 55

i Folding

= Can replace recursion by fold_right in any
forward primitive recursive definition

= Primitive recursive means here it only recurses
on immediate subcomponents of recursive data
structure

= Can replace recursion by fold_left in any tail
primitive recursive definition

2/12/23 56

2/12/23

Extra Material

58

i How long will it take?

= Remember the big-O notation from CS 225
and CS 374

= Question: given input of size 1, how long to
generate output?

= Express output time in terms of input size,
omit constants and take biggest power

2/12/23 59

i How long will it take?

Common big-0O times:
= Constant time O (1)
= input size doesn’t matter
= Linear time O (n)
= double input = double time
= Quadratic time O ()
= double input = quadruple time
= Exponential time O (27)
= increment input = double time

2/12/23

60

i Linear Time

= Expect most list operations to take
linear time O (n)

= Each step of the recursion can be done
In constant time

= Each step makes only one recursive call
= List example: multList, append
= Integer example: factorial

2/12/23 61

i Quadratic Time

= Each step of the recursion takes time
proportional to input

= Each step of the recursion makes only one
recursive call.

= List example:

let rec poor_rev list = match list
with [] -> []
| (X::xs) -> poor_rev xs|@|[x];;
val poor_rev : 'a list -> 'a list = <fun>

2/12/23 62

i Exponential running time

= Poor worst-case running times on input of

any size
= Each step of recursion takes constant time
= Each recursion makes two recursive calls

= Easy to write nailve code that is exponential

for functions that can be linear

2/12/23 63

i Exponential running time

let rec slow n =
ifn <=1
then 1
else 1+slow (n-1) + slow(n-2);;
val slow : int -> int = <fun>
List.map slow [1:2:3;4:5;6;7;8;9];;
- intlist = [1; 3; 5; 9; 15; 25; 41; 67;
109]

2/12/23 64

i Recall: Tail Recursion

= A recursive program is tail recursive if all
recursive calls are tail calls

= Tail recursive programs may be optimized to
be implemented as loops, thus removing the
function call overhead for the recursive calls

= Tail recursion generally requires extra
“accumulator” arguments to pass partial
results

= May require an auxiliary function

2/12/23 65

i Terminology

= Available: A function call that can be
executed by the current expression

= The fastest way to be unavailable is to be
guarded by an abstraction (anonymous

function, lambda lifted).

- |f Mthen.else (X + g X)

- |fthen (fun x -> f x) else((g (x + X))
*

Not available

2/12/23

i Terminology

= Tail Position: A subexpression s of
expressions e, which is available and such
that if evaluated, will be taken as the value
of e

« if (X>3) then|x + 2|else|x -4 |
= letx=5in[x+ 4]
= Tail Call: A function call that occurs in tall
position
« if (h x) then[f x]else|(x + g X)]

2/12/23 67

i An Important Optimization

= When a function call is made,
Normal the return address needs to be
call saved to the stack so we know
to where to return when the
L call is finished

g = What if fcalls gand g calls 5,

F but calling /s the last thing g
does (a tail call)?

2/12/23 68

i An Important Optimization

= When a function call is made,

Tail the return address needs to be
call saved to the stack so we know
to where to return when the
& L call is finished

f = What if 7calls gand g calls 5,
but calling Ais the last thing g
does (a tail call)?

= Then /1 can return directly to 7
instead of g

2/12/23 69

2/1

2/23

End of Extra Material

i Continuations

= A programming technique for all forms
of “non-local” control flow:
= hon-local jumps
= exceptions

= general conversion of non-tail calls to tail
calls

= Essentially it’ s a higher-order function
version of GOTO

2/12/23 72

i Continuations

= Idea: Use functions to represent the control
flow of a program

= Method: Each procedure takes a function as
an extra argument to which to pass its
result; outer procedure “returns” no result

= Function receiving the result called a
continuation

= Continuation acts as “accumulator” for work
still to be done

2/12/23 73

i Continuation Passing Style

= Writing procedures such that all
procedure calls take a continuation to
which to give (pass) the result, and
return no result, is called continuation
passing style (CPS)

2/12/23 74

i Continuation Passing Style

= A compilation technique to implement non-
local control flow, especially useful in
Interpreters.

s A formalization of non-local control flow in
denotational semantics

= Possible intermediate state in compiling
functional code

2/12/23 75

i Why CPS?

= Makes order of evaluation explicitly clear

Allocates variables (to become registers) for each

step of computation

= Essentially conver

imperative ones

s functional programs into

= Major step for compiling to assembly or byte

code

identified

2/12/23

Tail recursion (and forward recursion) easily

76

i Other Uses for Continuations

= CPS designed to preserve order of
evaluation

= Continuations used to express order of
evaluation

= Can be used to change order of evaluation

= Implements:
= EXceptions and exception handling
= Co-routines
= (pseudo, aka green) threads

2/12/23

77

Example

= Simple reporting continuation: ‘
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

‘. Simple function using a continuation:‘

let addk (a, b) k =k (a + b);;

val addk : int * int -> (int-> "a) -> "a = <fun>
addk (22, 20) report;;

2

- 1 unit = ()

2/12/23

78

i Simple Functions Taking Continuations

= Given a primitive operation, can convert it to
pass its result forward to a continuation

= Examples:

let subk (x, y) k = k(x -vy);;

val subk : int * int -> (int -> 'a) -> 'a = <fun>
let egk (x, y) k= k(x =y);;

val egk : 'a * 'a -> (bool -> 'b) -> 'b = <fun>

let timesk (X, y) k = k(x *y);;

val timesk : int * int -> (int -> 'a) -> 'a = <fun>

2/12/23 79

i Nesting Continuations

let add_triple (X, y,z) = (X +vy) + z;;

val add_triple : int * int * int -> int = <fun>

let add_triple (x,y,2)=letp=x+vyinp + z;;
val add_triple : int * int * int -> int = <fun>

let add_triple_k (X, y, z) k =

addk (x, y)|(fun p -> addk (p,) [k]);;

val add_triple_k: int * int * int -> (int -> 'a) ->
'a = <fun>

2/12/23 80

i add three: a different order

n # let add_triple (x, ¥, 2) = X + (Y + 2):;

= How do we write add_triple_k to use a
different order?

s let add_triple_k (X, y, z) k =

2/12/23

81

i add three: a different order

s # let add_triple (X, ¥, 2) = x + (Y + 2):;

= How do we write add_triple_k to use a
different order?

s let add_triple_k (X, y, z) k =
addk (y,z) (fun r -> addk(x,r) k)

2/12/23 82

