Programming Languages and
Compilers (CS 421)

IElsa L Gunter
2112 SC, UIUC v

https://courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

2/1/23

‘ Functions Over Lists

# let rec double_up list =
match list
with [ ]->[] (* pattern before ->,
expression after *)
| (x ::xs)->(x::x:: double_up xs);;
val double_up : 'a list -> 'a list = <fun>
# let fib5_2 = double_up fib5;;
val fib5_2 :intlist = [8; 8; 5; 5; 3; 3; 2; 2; 1;
1;1; 1]

2/1/23 2

‘ Functions Over Lists

# let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]
# let rec poor_rev list =

match list

with [1->[]

| (x::xs) -> poor_rev xs @ [X];;

val poor_rev : 'a list -> 'a list = <fun>
# poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]

2/1/23

‘ Same Length

= How can we efficiently answer if two lists
have the same length?

2/1/23

‘ Same Length

= How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
match listl with [] ->
(match list2 with [] -> true
| (y::ys) -> false)
| (x::xs) ->
(match list2 with [] -> false
| (y::ys) -> same_length xs ys)

2/1/23

‘ Your turn: doubleList : int list -> int list

= Write a function that takes a list of int and
returns a list of the same length, where each
element has been multiplied by 2

let rec doubleList list =

2/1/23 6




‘ Your turn: doubleList : int list -> int list

= Write a function that takes a list of int and
returns a list of the same length, where each
element has been multiplied by 2

let rec doubleList list =
match list
with [] ->[]
| x ::xs->(2*x):: doubleList xs

2/1/23 7

‘ Your turn: doubleList : int list -> int list

= Write a function that takes a list of int and
returns a list of the same length, where each
element has been multiplied by 2

let rec doubleList list =
match list

|::xs-> 2 *x):
~

doubleList xs

2/1/23 8

‘ Higher-Order Functions Over Lists

# let rec map f list =
match list
with []-> []
| (h::t) -> (fh) :: (map ft);;
val map : ('a->"'b) -> 'alist -> 'b list = <fun>
# map plus_two fib5;;
-rintlist = [10; 7; 5; 4; 3; 3]
# map (fun x -> x - 1) fib6;;
vintlist = [12; 7; 4; 2; 1; 0; 0]

2/1/23 9

‘ Higher-Order Functions Over Lists

# let rec map f list =

match list

with [] -

| :: ->[(F h)l:: [(map f o ;
val map—: (‘a<> 'b) -> 'alist -> 'b list = <fun>
# map plus_two fib5;;
-rintlist = [10; 7; 5; 4; 3; 3]
# map (fun x -> x - 1) fib6;;
vintlist =[12; 7; 4; 2; 1; 0; 0]

~

2/1/23 10

‘ Mapping Recursion

= Can use the higher-order recursive map
function instead of direct recursion

# let doubleList list =
List.map (fun x -> 2 * x) list;;
val doublelList : int list -> int list = <fun>
# doubleList [2;3;4];;
- rint list = [4; 6; 8]

2/1/23 11

‘ Mapping Recursion

= Can use the higher-order recursive map
function instead of direct recursion

# let doubleList list =
List.map (fun x -> 2 * x) list;;
val doublelList : int list -> int list = <fun>
# doublelList [2;3;4];;
- 1 int list = [4; 6; 8]

= Same function, but no explicit recursion

2/1/23 12




‘ Folding Recursion

= Another common form “folds” an operation
over the elements of the structure

# let rec multList list = match list
with[]->1
| x::xs -> x * multList xs;;
val multList : int list -> int = <fun>
# multList [2;4;6];;
-:int =48

= Computes (2 * (4 * (6 * 1)))

2/1/23 13

‘ Folding Recursion : Length Example

# let rec length list = match list
with [ 1-> 0 (* Nil case *)
| a::bs->1+ length bs;; (* Cons case *)
val length : 'a list -> int = <fun>
# length [5; 4; 3; 2];;
-:int=4
= Nil case [ ] is base case, 0 is the base value
= Cons case recurses on component list bs
= What do multList and length have in common?

2/1/23 14

Forward Recursion

= In Structural Recursion, split input into
components and (eventually) recurse

= Forward Recursion form of Structural
Recursion

= In forward recursion, first call the function
recursively on all recursive components, and
then build final result from partial results

= Wait until whole structure has been
traversed to start building answer

2/1/23 16

‘ Forward Recursion: Examples

# let rec double_up list =
match list
with[]->1[]
| (x::xs)-> (x:: x:: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

# let rec poor_rev list =
match list
with [1-> []
| (x::xs) -> let r = poor_rev xsinr @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

2/1/23 17

Forward Recursion: Examples

# let rec double_up list =
match list
with [ ] ->

| (x 2 x8) ->[(x :: x ::|double_up xs);;
val double/up : 'aTist ->{"a [ist = <fuR=_
| Base Case | | Operator || Recursive Call|
# let rec poor_rev list =
match list

with []->
| (X::Xi?/->| let r = poor_rev xs in r[@ [x];; |
poor_rev : 'a list -> 'a list =~<fup>"
Base Case | | Operator || Recursive Call|

2/1/23 18

va

Recursing over lists

# let rec fold_right f list b = AN
match list _ k e
with [1-> b The Primitive
| (x:: xs) -> f x (fold_right f xs b);; Recursion Fairy

val fold_right : ("a->'b->"'b) -> 'alist->'b->'b =

<fun>

# fold_right

(fun s -> fun () -> print_string s)
[Ilhill; Iltherell]
O

therehi- : unit = (Ow

2/1/23 19




‘ Folding Recursion : Length Example

# let rec length list = match list
with [ T-> 0 (* Nil case *)
| a::bs->1+ length bs;; (* Cons case *)
val length : 'a list -> int = <fun>
# let length list =
fold_right (funa->funr->1 +r) list 0;;
val length : 'a list -> int = <fun>
# length [5; 4; 3; 2];;
-:int=4

2/1/23 20

‘ Folding Recursion

= multList folds to the right
= Same as:

# let multList list =
List.fold_right
(fun x -> fun p -> x * p)
list 1;;
val multList : int list -> int = <fun>
# multList [2;4;6];;
-:int =48

2/1/23 21

Forward Recursion: Examples

# let rec double_up list =

match list
with [ ] -
| (x::x8)->[(x :: x ::[double_up xs});;
val doubl : 'afist ->f"a list = <fonAx_

Base Case | | Operator || Recursive Call|
# let double_up =

fold_right (fun x -> fun r ->Ix :: x ::}fr) list|[ ]

[Operator|  |Recursive resulf |Base Case |
# double_up ["a";"b"];;
- : String “st - ["a"; "a"; "b"; "b“]

2/1/23 22

‘ Encoding Forward Recursion with Fold

# let rec append listl list2 =

val append : 'a list -> 'a list -> 'a list = <fun>

2/1/23 24

‘ Encoding Forward Recursion with Fold

# let rec append listl list2 = match listl with

val append : 'a list -> 'a list -> 'a list = <fun>

2/1/23 25

‘ Encoding Forward Recursion with Fold

# let rec append listl list2 = match list1 with
[1-> list2
val append : 'a list -> 'a list -> 'a list = <fun>

2/1/23 26




‘ Encoding Forward Recursion with Fold

# let rec append listl list2 = match listl with
[1->

val append : 'a list -> 'a list -> 'a list = <fun>

Base Case

2/1/23 27

’ Encoding Forward Recursion with Fold

# let rec append listl list2 = match listl with
[ 1->[list2]] x::xs ->

val append : 'a list -> 'a list -> 'a list = <fun>

Base Case

2/1/23 28

‘ Encoding Forward Recursion with Fold

# let rec append listl list2 = match list1 with

[ 1->list2 | x::xs -> x :: append xs list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

Base Case

2/1/23 29

’ Encoding Forward Recursion with Fold

# let rec append listl list2 = match list1 with
[ 1->|list2 || x::xs ->[x ::]Bppend xs listd;;
val append : 'a list -> 'a/list -> 'aNjst = <fun>

| Base Case | |Operation || Recursive Call |

2/1/23 30

‘ Encoding Forward Recursion with Fold

# let rec append listl list2 = match listl with
[ 1->[list2 || x::xs ->[x ::|eppend xs list2;;
val append : 'a list -> 'a/list -> 'a\l'S\t= <fun>

| Base Case | |Operation || Recursive Call |

# let append list1 list2 =
fold_right (fun x -> funy ->
val append : 'a list -> 'a list -> 'a list = <fun>

2/1/23 31

’ Encoding Forward Recursion with Fold

# let rec append listl list2 = match list1 with
[ 1->|list2 ]| x::xs ->[x ::|bppend xs Tist2;;
val append : 'a list -> 'a/list -> 'a\l'sKt= <fun>

| Base Case | |Operation || Recursive Call |

# let append list1 list2 =
fold_right (fun x -> funy ->

val append : 'a list -> 'a list -> 'a list = <fun>

# append [1;2;3] [4;5;6];;

-:intlist = [1; 2; 3; 4; 5; 6]

2/1/23 32




i Tail Recursion

= A recursive program is tail recursive if all
recursive calls are tail calls

= Tail recursive programs may be optimized to
be implemented as loops, thus removing the
function call overhead for the recursive calls

= Tail recursion generally requires extra
“accumulator” arguments to pass partial
results
= May require an auxiliary function

2/1/23 33

‘ Terminology

= Available: A function call that can be
executed by the current expression

= The fastest way to be unavailable is to be
guarded by an abstraction (anonymous

function, lambda lifted).

. ifEh X ‘thenelse

= if[(h x)| then (fun x -> f x) else[(g (x + x))
| 1)

Not available

2/1/23 34

‘ Terminology

= Tail Position: A subexpression s of
expressions e, which is available and such
that if evaluated, will be taken as the value
of e
u if (x>3) then|x + 2|else|x - 4 |
»letx =5in

= Tail Call: A function call that occurs in tail
position

« if (h x) then[f x]else

2/1/23 35

‘ Tail Recursion - length

= How can we write length with tail recursion?
let length list =
let rec length_aux list acc_length =
match list
with [ ] -> acc_length
| (X::xs) ->
length_aux xs (1 + acc_length)
in length_aux list 0

2/1/23 36




