Programming Languages and
Compilers (CS 421)

i

IElsa L Gunter
2112 SC, UIUC v

https://courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

1/20/23 1

‘ Features of OCAML

= Higher order applicative language
= Call-by-value parameter passing
= Modern syntax
= Parametric polymorphism

= Aka structural polymorphism
= Automatic garbage collection
= User-defined algebraic data types

1/20/23

‘ Why learn OCAML?

= Many features not clearly in languages you have
already learned

= Assumed basis for much research in programming
language research

= OCAML is particularly efficient for programming tasks
involving languages (eg parsing, compilers, user
interfaces)

» Industrially Relevant:

= Jane Street trades billions of dollars per day using OCaml
programs
= Major language supported at Bloomberg

= Similar languages: Microsoft F#, SML, Haskell, Scala

1/20/23 3

‘ Session in OCAML

% ocaml
Objective Caml version 4.07.1

(* Read-eval-print loop; expressions and

declarations

2+3 (* Expression *)
- rint=5
#3<2;
- : bool = false

1/20/23

‘ Declarations; Sequencing of Declarations

#letx =2+ 3;; (* declaration *)

valx:int=5

lettest = 3 < 2;;

val test : bool = false

#leta=1letb =a + 4;; (* Sequence of dec
*)

vala:int=1

valb:int=5

1/20/23 5

‘ Functions

let plus_twon=n + 2;;

val plus_two : int -> int = <fun>
plus_two 17;;

-:int =19

1/20/23

‘ Functions

let plus_two =1+ 2;;

plus_two 17;;
-:int=19

1/20/23

‘ Environments

= Environments record what value is associated with
a given identifier

= Central to the semantics and implementation of a
language
= Notation

p = {name; — value;, name,— value,, ...}
Using set notation, but describes a partial function

= Often stored as list, or stack
= To find value start from left and take first match

1/20/23 20

‘ Environments

X=>3

y=> 17

b = true

1/20/23

name =» “Steve”

region = (5.4, 3.7)

~ id =& {Name = “Paul’,
Age = 23,
SSN = 999888777}

~

21

‘ Global Variable Creation

#2+3;; (* Expression *)

// doesn’ t affect the environment

lettest =3 < 2;; (* Declaration *)
val test : bool = false

/| p; = {test — false}

#leta=1letb =a+ 4;; (* Seq of dec *)
/| po ={b—5,a— 1, test - false}

1/20/23 2

‘ Environments

1/20/23

test = true

b=>5

23

‘ New Bindings Hide Old

/] p,=4{b—5,a—1,test — false}
let test = 3.7;;

= What is the environment after this
declaration?

1/20/23 2

‘ New Bindings Hide Old

/] p,=4{b—>5,a—1,test — false}
let test = 3.7;;

= What is the environment after this
declaration?

/| p;={test »3.7,a—1,b— 5}

1/20/23 25

’ Environments

test = 3.7
b=>5

1/20/23 26

+

Now it’s your turn

You should be able to start ACT1

1/20/23 27

* Local Variable Creation

/] p3={test 3.7, a—>1,b—>5

test > 3.7
> a1
b>5

/] ps = p3={test > 3.7,a > 1, b — 5}

e test & 3.7
i
b=>5
-:int=5

1/20/23 29

i Local let binding

/] ps=p;={test > 3.7, a—>1,b
#letc=
let b = 4
Il pe ={b— 2} + p3
/! ={b—>2,test > 3.7, a—> 1}
inb *b;;
valc:int=4
/] py={c—>4,test>3.7,a—>1,b—>5}
#b;;
-:int=5

a1 test > 3.7
3 b=>5

1/20/23 30

* Local let binding

/] ps=p3;={test »3.7,a—>1,b

Il pe=<{b—2}+p;

valc:int=4

/| py=4{c—>4,test »3.7,a—>1,b—>5}
#b;;

-:int=5

1/20/23 31

‘ Local let binding

a test > 3.7
/] ps=p3={test > 3.7,a—>1,b
#letc = /
let b =3
+ g
‘,@»

[—
A = /

.

inb a1 test>37
valc:int=4 THa4 bas
/| p;={c—>4,test »3.7,a—>1,b—>5}
#b;;
-:1int=5

1/20/23 32

’ Functions

let plus_twon =n + 2;;

val plus_two : int -> int = <fun>
plus_two 17;;

-:int =19

1/20/23 33

‘ Functions

let plus_two n =n + 2;;

plus_two 17;;
-:int=19

1/20/23 34

;’ Nameless Functions (aka Lambda Terms)

‘—
funn->n+2;;

—
(funn->n+2)17;;

~rint = 197

1/20/23 35

‘ Functions

let plus_twon =n + 2;;

val plus_two : int -> int = <fun>

plus_two 17;;

-:int=19

let plus_two = funn->n + 2;;

val plus_two : int -> int = <fun>

plus_two 14;;

-:int =16

|First definition syntactic sugar for second|

1/20/23 36

’ Using a nameless function

(fun x-> x * 3) 5;; (* An application *)

-:int=15

#((funy->y+.2.0), (funz->z*3));;
(* As data *)

- : (float -> float) * (int -> int) = (<fun>,
<fun>)

Note: in fun v -> exp(v), scope of variable is
only the body exp(v)

1/20/23 37

‘ Values fixed at declaration time
#letx = 12;;—>
val x :int =12

letplus_xy =y +Xx;;
val plus_x : int -> int = <fun>
plus_x 3;;

What is the result?

1/20/23

39

‘ Values fixed at declaration time

#letx =12;;

val x :int =12

let plus_xy =y +Xx;;

val plus_x : int -> int = <fun>
plus_x 3;;

-:int=15

1/20/23

40

‘ Values fixed at declaration time

let x = 7;; (* New declaration, not an
update *)
valx:int=7

plus_x 3;;

What is the result this time?

1/20/23

41

‘ Values fixed at declaration time

let x = 7;; (* New declaration, not an
update *)
valx :int=7

What is the result this time?

1/20/23

42

‘ Values fixed at declaration time

let x = 7;; (* New declaration, not an
update *)
valx:int=7

plus_x 3;;
-:int =15

1/20/23

43

‘ Question

» Observation: Functions are first-class values

in this language

= Question: What value does the environment

record for a function variable?

= Answer: a closure

1/20/23

44

* Save the Environment!

= A closureis a pair of an environment and an
association of a formal parameter (the input
variables)* with an expression (the function
body), written:

f — < (vi,..,vn) > exp, pf >

= Where ps is the environment in effect when f
is defined (if f is a simple function)

* Will come back to the “formal parameter”

1/20/23 45

* Closure for plus_x

= When plus_x was defined, had environment:
pplus_x = {, X —> 12, }
= Recall: let plus_xy =y + x
is really let plus_x = funy ->y + x
» Closure for funy ->vy + x:
<Y =Y + X Pplus_x >
= Environment just after plus_x defined:

{plus_x > <y >y + X, Pplus_x >} + Pplus_x

1/20/23

46

+

Now it's your turn

You should be able to
complete ACT1

1/20/23 47

