Programming Languages and
Compilers (CS 421)

Elsa L Gunter

2112 SC, UIUC
https.//courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

1/18/23

https://courses.engr.illinois.edu/cs421/sp2023

i Programming Languages & Compilers

Three Main Topics of the Course

New
Programming
Paradigm

Language
Translation

Language
Semantics

1/18/23 2

i Programming Languages & Compilers

Order of Evaluation

Language L
MINg T —Hansiaben— | Semantics

C

Specification to Implementation

1/18/23 3

i Programming Languages & Compilers

| : New Programming Paradigm

Functional |[Environments|/Patterns of || Continuation

Programming and Recursion Passing

Closures Style

1/18/23 4

Programmmg Languages & Compilers

Order of Evaluation

Functionrs

Enwronment Patterns of satinuation
Programmlng |

Closures

Specification to Implementation

1/18/23 5

i Programming Languages & Compilers

Il : Language Translation

Lexing and

Interpretation
Parsing

1/18/23 6

i Programming Languages & Compilers

Order of Evaluation

Specification to Implementation

1/18/23 7

i Programming Languages & Compilers

lll : Language Semantics

Lambda
Calculus

Axiomatic
Semantics

Operational

Semantics

1/18/23 8

i Programming Languages & Compilers

Order of Evaluation

Specification to Implementation

1/18/23 9

i Contact Information - Elsa L Gunter

= Office: 2112 SC

= Office hours:
= TBD
= Today 11:00am — 11:50 pm
= Also by appointment

= Email: equnter@illinois.edu

= Do not use DM in Campuswir if you want a
timely response. It does not email me
notifications of that and it make take days for
a response.

1/18/23 12

mailto:egunter@illinois.edu

* Course TAs

,;. \ r<f3# \ /
Aruhan Shaurya Sizhuo Li
Gomber

Amrith Paul Yerong LI “Tomoko

Balachander Krogmeier Sakurayama
1/18/23 13

i Course Website

https.//courses.engr.illinois.edu/cs421/sp2023

Main page - summary of news items
Policy - rules governing course
Lectures - syllabus and slides

MPs - information about assignments

Exams — Syllabi and review material for Midterms
and finals

Unit Projects - for 4 credit students
Resources - tools and helpful info
FAQ

1/18/23 14

https://courses.engr.illinois.edu/cs421/sp2023

& Some Course References

= No required textbook
= Some suggested references

modern

: compiler
implementation
% in ML

Compilers

. /ESSENTIALS
OF PROGRAMMING
:\ N _\\LA N G uA}G E S z

1/18/23

i Some Course References

No required textbook.
Pictures of the books on previous slide

Essentials of Programming Languages (2nd Edition)
by Daniel P. Friedman, Mitchell Wand and
Christopher T. Haynes, MIT Press 2001.

Compilers: Principles, Techniques, and Tools, (also
known as "The Dragon Book"); by Aho, Sethi, and
Ullman. Published by Addison-Wesley. ISBN: O-
201-10088-6.

Modern Compiler Implementation in ML by Andrew
W. Appel, Cambridge University Press 1998

Additional ones for Ocaml given separately

1/18/23 16

i Course Grading

= Assignments 10%
= Web Assignments (WA) (~3-6%)
= MPs (in Ocaml) (~4-7%)
= All WAs and MPs Submitted in PrairieLearn
= May include necessary reading material

= Late submission:
= 48 hours, unless otherwise specified
= capped at 80% of total

1/18/23

17

i Course Grading

= Four quizzes, in class - 10%

= 3 Midterms - 15% each
=« Taken in the Computer Based Testing Facility (CBTF)

= Self-scheduled from a four-day period
= Final: 35%, May 9, 7:00pm — 10:00pm
= Percentages are approximate

1/18/23

18

i Course Assingments — WA & MP

= You may discuss assignments and their solutions with
others

= You may work in groups, but you must list members
with whom you worked if you share solutions or
detailed solution outlines

= Each student must write up and turn in their
own solution separately

= No direct copy-paste — type it yourself from your
understanding

= You may look at examples from class and other similar
examples from any source — cite appropriately

= Note: University policy on plagiarism still holds - cite
your sources if not the sole author of your solution

= Do not have to cite course notes or me

1/18/23 19

i OCAML

= Locally:

= Will use ocaml inside VSCode inside PrairieLearn
problems this semester

= Globally:
= Main OCAML home: http://ocaml.org

= T0 install OCAML on your computer see:
http://ocaml.org/docs/install.html

= T0 try on the web: https://try.ocamlipro.com
= More notes on this later

1/18/23 20

http://ocaml.org
http://ocaml.org/docs/install.html
https://try.ocamlpro.com/

i References for OCam

= Supplemental texts (not required):

= The Objective Caml system release 4.05, by
Xavier Leroy, online manual

= Introduction to the Objective Caml
Programming Language, by Jason Hickey

= Developing Applications With Objective
Caml, by Emmanuel Chailloux, Pascal
Manoury, and Bruno Pagano, on O’ Reilly

= Available online from course resources

1/18/23 21

i Features of OCAML

Higher order applicative language
Call-by-value parameter passing
Modern syntax

Parametric polymorphism
= Aka structural polymorphism

Automatic garbage collection
User-defined algebraic data types

1/18/23

23

i Why learn OCAML?

= Many features not clearly in languages you have
already learned

= Assumed basis for much research in programming
language research

= OCAML is particularly efficient for programming tasks
involving languages (eg parsing, compilers, user
interfaces)

= Industrially Relevant:

= Jane Street trades billions of dollars per day using OCaml
programs

= Major language supported at Bloomberg
= Similar languages: Microsoft F#, SML, Haskell, Scala

1/18/23 24

i Session in OCAML

% ocaml
Objective Caml version 4.07.1

(* Read-eval-print loop; expressions and
declarations

2+ 3 (* Expression *)
- 1int=5
#3<2:;
- : bool = false

1/18/23

25

i Declarations; Sequencing of Declarations

#letx =2+ 3;; (* declaration *)
val x:int=5
lettest =3 < 2;;

val test : bool = false

#leta=1letb =a + 4;; (* Sequence of dec
*)

vala:int=1

valb:int=5

1/18/23 26

i Functions

let plus_ twon=n+ 2;;

val plus_two : int -> int = <fun>
plus_two 17;;

-:int =19

1/18/23

27

i Functions

let plus_two nI =n+2;;

/

plus_two 17;;
-:int =19

1/18/23

28

1/18/23

Extra Material

30

i No Overloading for Basic Arithmetic Operations

15« 2;;
- int = 30
1.35 + 0.23;; (* Wrong type of addition *)
Characters 0-4:
1.35 + 0.23;; (* Wrong type of addition *)

NANNN

Error: This expression has type float but an
expression was expected of type

INt
1.35 +. 0.23;;
- : float = 1.58

1/18/23 31

i No Implicit Coercion

1.0 * 2;; (* No Implicit Coercion *)
Characters 0-3:
1.0 * 2;: (* No Implicit Coercion *)
NN/N

Error: This expression has type float but an
expression was expected of type

INt

1/18/23

32

i Booleans (aka Truth Values)

true;;

- : bool = true

false;;

- : bool = false

/| pp={c—>4,test > 3.7,a—>1,b— 5}
#1f b > athen 25 else 0;;

-1int = 25

1/18/23

33

i Booleans and Short-Circuit Evaluation

#3>18224>6::

- : bool = false

#3>11|4>6::

- : bool = true

(print_string "Hi\n"; 3> 1) || 4 > 6;;
Hi

- : bool = true

3 > 1 || (print_string "Bye\n"; 4 > 6);;
- : bool = true

not (4 > 6);;

- : bool = true

1/18/23 34

i Sequencing Expressions

"Hi there";; (* has type string *)
- : string = "Hi there"

"Hello world\n";; (* has type unit *)
Hello world

- 1 unit = ()

(print_string "Bye\n"; 25);; (* Sequence of exp *)
Bye

-:int =25

1/18/23 35

i Recursive Functions

let rec factorial n =
if n = 0 then 1 else n * factorial (n - 1);;
val factorial : int -> int = <fun>
factorial 5;;
-1 int =120
(* rec is needed for recursive function
declarations *)

1/18/23

36

i Recursion Example

Compute n? recursively using:
n=(2*n-1)+ (n-1)2

let rec nthsg n = (* rec for recursion *)
match n (* pattern matching for cases *)
with 0 -> 0 (* base case *)

n->(2*n-1) (* recursive case *)

+ nthsqg (n -1);; (* recursive call *)
val nthsq : int -> int = <fun>

nthsq 3;;

- 1int=9

Structure of recursion similar to inductive proof

1/18/23 37

i Recursion and Induction

let rec nthsg n = match nwith 0 -> 0
In->(2*n-1)+nthsg(n-1) ;;

= Base case is the last case; it stops the computation

= Recursive call must be to arguments that are
somehow smaller - must progress to base case

= If or match must contain base case
= Failure of these may cause failure of termination

1/18/23 38

1/18/23

End of Extra Material

39

i Environments

s Environments record what value is associated with
a given identifier

= Central to the semantics and implementation of a
language

= Notation

p = {name; — value;, name,— value,, ...}
Using set notation, but describes a partial function

= Often stored as list, or stack
= 10 find value start from left and take first match

1/18/23 41

i Environments

X = 3 name = “Steve”

vy D> 17 region = (5.4, 3.7)

_ id & {Name = “Paul’, \
b = true Age = 23,
SSN = 999888777}

—_—

1/18/23 4

i Global Variable Creation

#2+ 3;; (* Expression *)

// doesn’ t affect the environment

let test = 3 < 2;; (* Declaration *)
val test : bool = false

/] p; = {test — false}

#leta=1letb =a + 4;; (* Seq of dec *)
/| p» ={b —> 5, a— 1, test - false}

1/18/23 43

i Environments

test = true

b=>5

1/18/23

44

i New Bindings Hide Old

/| p> ={b—>5,a—> 1, test — false}
let test = 3.7;;

s What is the environment after this
declaration?

1/18/23

45

i New Bindings Hide Old

/| p> ={b—>5,a—> 1, test — false}
let test = 3.7;;

s What is the environment after this
declaration?

[/ p3={test > 3.7, a—>1,b— 5}

1/18/23

46

i Environments

1/18/23

47

Now it's your turn

You should be able to do WA1-IC
Problem 1, parts (* 1 *) - (* 3 *)

1/18/23 48

