
Sample Questions for Midterm 2 (CS 421 Spring 2023)

Some of these questions may be reused for the exam.

1. Give a (most general) unifier for the following unification instance. Capital letters denote

variables of unification. Show your work by listing the operation performed in each step of the
unification and the result of that step.

{X = f(g(x),W); h(y) = Y; f(Z,x) = f(Y,W)}
2. Write a function

 unify_eliminate : typeVar -> monoTy -> (monoTy * monoTy) list ->
 ((monoTy * monoTy) list -> (typeVar * monoTy) list option) ->
 (typeVar * monoTy) list option
where is unify_eliminate given the arguments ns is a typeVar, t is a monoTy,
rem_constraints is a list of monoTy pairs describing a set of equational constraints on
monoTys, and unify_rem is a function capable of returning a substitution capable of solving
rem_constraints if a solution exists, but is not necessarily capable of solving any other set of
constraints. When fully applied, unify_eliminate then returns a solution to the larger set of
constraints: (TyVar ns, t) :: rem_constraints

3. For each of the following descriptions, give a regular expression over the alphabet {a,b,c}, and

a right regular grammar that generates the language described.
a. The set of all strings over {a, b, c}, where each string has at most one a

b. The set of all strings over {a, b, c}, where, in each string, every b is immediately followed

by at least one c.

c. The set of all strings over {a, b, c}, where every string has length a multiple of four.

4. This problem is too big to be an exam question, but it can be cut down to a few different
problems that would be possible. For example, just having strings is a plausible exam
problem. I include the whole problem because it poses several difficulties to challenge you,
and because the end result is actually useful.

Write an ocamllex file that translate a (simplified) comma separated values (.csv) file into a
reversed list of reversed lists of entries, where an entry is an integer, a float, or a string. Entries
are represented using the following type:

type csv_entry = INT of int | FLOAT of float | STRING of string
The file will contain newline ended rows of comma separated values, where a value is
representation of an integer, float or string. An integer is represented as a nonempty sequence
of digits, possibly preceded by a minus sign, where the leading digit is a 0 only if the integer is
a 0 and 0 is not preceded by a minus sign. Floats are similar, but with a decimal point. So a
float may start with a minus sign but then must have a nonempty sequence of digits, starting
with 0 only if the integer part is 0, followed by a period, follow by a nonempty sequence of
digits that does not end in a 0. (So, 1. , 1.0, .9 and -.5 are some examples of things that are not
legal.) There are two representations of strings. Strings only use printable characters, as
described in MP8, but including \ as an ordinary character. One type of string representation is

any (possibly empty) sequence of printable characters not including a double quotes or comma.
Its value should be the string that contains that sequence of characters. If the same sequence
also represents an integer of a float, it should be translated as the integer or float, not a string.
The second type of string representation must begin with and end with a single double quotes.
Inside commas may freely be used. Since double quotes end the string, they can’t appear inside
the string without special support. This time, a double quote inside a string is represents by a
pair of double quotes. So """" represents a string that has one character which is a double
quotes. On an exam, you would be given some of the contents described here as starter code.
A sample contents for a csv file is

"""",Does,"""""",this ,""", ?","""work"""
\n,4,-0.4,33,0.1,0.2

 Be sure to put only ASCII characters into your test file, or use test_csv.csv.

5. Consider the following grammar:

<S> ::= <A> | <A> <S>
<A> ::= <Id> | (
 ::= <Id>] | <Id> | (
<Id> ::= 0 | 1

For each of the following strings, give a parse tree for the following expression as an <S>, if
one exists, or write “No parse” otherwise:

a. (0 1 (1] ((1 0] 1
b. 0 (1 0 (1]
c. (0 (1 0 1] 0]

6. You	are	given	the	following	grammar	over	nonterminal	<s>,		and	<e>,	and	terminals	c,	
x,	l,	and	eof,	with	start	symbol	<s>:	

P0:	<s>	::=	<e>eof	
P1:	<e>	::=	c<e><e>	P2:	<e>	::=	x	
P3:		::=	<e>l	

and	Action	and	Goto	tables	generated	by	YACC	for	the	above	grammar:		

																																	Action																																					Goto

State x c l [eof] <e> <s>

st1 S3 S4 Err Err st2

st2 Err Err Err A

st3 R2 R2 R2 R2

st4 S3 S4 Err Err st6 st5

st5 Err Err S7 Err

st6 S3 Err S8 Err st6 st8

st7 R3 R3 R3 R3

st8 S3 S4 Err Err st9

st9 R1 R1 R1 R1

where	sti	is	state	i,	Si	abbreviates	shift	i,	Ri	abbreviates	reduce	i,	A	abbreviates	accept,	RErr	
abbreviates	error	and	[eof]	means	we	have	reached	the	end	of	input.			Describe	how	the	
string	cxlxx[eof]	would	be	parsed	with	an	LR	parser	using	these	productions	and	tables	by	
filling	in	the	table	on	the	next	page.	I	have	given	you	the	first	7	cells	in	the	first	three	rows	to	
get	you	started.	Thereafter,	there	are	more	blank	lines	than	you	should	need	to	fill	in	the	rest.		

Stack Current unprocessed
String

Action	to	be	taken	

Empty cxlxx[eof] Initialize	stack,	go	to	state	1	
st1 cxlxx[eof] Shift c, go to state 4
st1::c::st4 xlxx[eof]

