
Sample Questions for Midterm 2 (CS 421 Spring 2023)

Some of these questions may be reused for the exam.

1. Put the following function in full continuation passing style:
let rec sum_odd n = if n <= 0 then 0 else ((2 * n) – 1) + sum_odd (n – 1);;

Use addk, subk, mulk, leqk, for the CPS forms of the primitive operations (+, - , *, <=).
All other procedure calls and constructs must be put in CPS

2. Review and be able to write any give clause of cps_exp from MP5. On the exam, you
would be given all the information you were given in MP5.

3. Given the following rules for CPS transformation:
[[x]] K => K x
[[c]] K => K c
[[let x = e1 in e2]] K=> [[e1]] (FN x -> [[e2]] K)
[[e1 ⊕ e2]] K=> [[e2]] (FN a -> [[e1]] (FN b -> K (b ⊕ a)))
where e1and e2 are OCaml expressions, K is any continuation, x is a variable and c is a
constant, give the step-by-step transformation of

[[let x = 2 + 3 in x – 4]] REPORTk

4. Write the definition of an OCAML variant type (algebraic data type) reg_exp to express
abstract syntax trees for regular expressions over a base character set of booleans. Thus, a
boolean is a reg_exp, epsilon is a reg_exp, a parenthesized reg_exp is a reg_exp, the
concatenation of two reg_exp’s is a reg_exp, the “choice” of two reg_exp’s is a reg_exp,
and the Kleene star of a reg_exp is a reg_exp.

5. Given the following OCAML datatype:
type int_seq = Null | Snoc of (int_seq * int)

write a tail-recursive function in OCAML all_pos : int_seq -> bool that returns true if every
integer in the input int_seq to which all_pos is applied is strictly greater than 0 and false
otherwise. Thus all_pos (Snoc(Snoc(Snoc(Null, 3), 5), 7)) should returns true, but
all_pos (Snoc(Null, -1)) and all_pos (Snoc(Snoc(Null, 3),0)) should both return false.

6. Give a polymorphic type derivation for {} |- let id = fun x -> x in id id true : bool

7. Write the clause for gather_exp_ty_substitution for a function expression implementing the
rule:

[x : t1] + G |- e : t2 | s
G |- (fun x -> e) : t | unify{(s(t), s(t1 -> t2))} o s

Refer to MP6 for the details of the types. You should assume that all other clauses for
gather_exp_ty_substitution have been provided.

