
CS421 Spring 2014 Midterm 1

Name:

NetID:

• You have 75 minutes to complete this exam.

• This is a closed-book exam. All other materials (e.g., calculators,
telephones, books, card sheets), except writing utensils are prohibited.

• Do not share anything with other students. Do not talk to other students.
Do not look at another students exam. Do not expose your exam to easy
viewing by other students. Violation of any of these rules will count as
cheating and you will be reported as such.

• If you believe there is an error, or an ambiguous question, you may seek
clarification from myself or one of the TAs. Raise your hand. You must
use a whisper, or write your question out. Speaking out aloud is not
allowed.

• Including this cover sheet and rules at the end, there are 19 pages to the
exam, including one blank page for workspace. Please verify that you
have all 19 pages.

• Please write your name and NetID in the spaces above, and also in the
provided space at the top of every sheet.

• We are going to check IDs after the exam starts; when you see us next
to your seat, please show us your ID or put it on the desk.

CS421 Spring 2014 Midterm #1 NetID:

Question Points Bonus Points Score

1 8 0

2 6 0

3 13 0

4 16 0

5 10 0

6 17 0

7 13 0

8 17 0

9 0 10

Total: 100 10

Page 2

CS421 Spring 2014 Midterm #1 Name:

Problem 1. (8 points)
Suppose that the following code is input one line at a time into OCaml:

let m = 20;;

let n = 30;;

let f m p = m + p - 50;;

let a = f n;;

let b = f (70,20);;

(a) (2 points) What is the type of f?

Solution:

int -> int -> int

(b) (3 points) Tell what, if anything, is returned for a. If no value is returned, explain
why not.

Solution: a is bound to a function of one integer argument that will return the
result of subtracting 20 from that argument.

(c) (3 points) Tell what, if anything, is returned for b. If no value is returned, explain
why not.

Solution: No value is returned because there is a type error. The first argument
to f must be an int, but here it is applied to an (int * int).

Page 3

CS421 Spring 2014 Midterm #1 NetID:

Problem 2. (6 points)
Write a function insert : ’a -> ’a list -> ’a list that takes in a element n and
a list. It returns a list with the element inserted immediately before the first element
that is greater than n. If there is no such position exists, insert n at the end of the list.
Note, if the list is sorted in ascending order, the order is preserved by the insertion.

let rec insert n l = ...

val insert : ’a -> ’a list -> ’a list = <fun>

insert 2 [1;3;5];;

- : int list = [1; 2; 3; 5]

Solution:

let rec insert n l =

match l with [] -> [n]

| x::xs -> if x > n then n::l else x::insert n xs

Page 4

CS421 Spring 2014 Midterm #1 Name:

Problem 3. (13 points)
Consider the following OCaml code:

let m = 1;;

let n = 2;;

let f x y = (m * x) + (n * y);;

let y = f 3;;

Describe the final environment that results from the execution of the above code if
execution is begun in an empty environment. Your answer should be written as a set
of bindings of variables to values, with only those bindings visible at the end of the
execution present. Your answer should be a precise mathematical answer, with a precise
description of values involved in the environment. You may name your environments and
closures, and use their names in describing other environments, but all applications of
the update operator (+) should be expanded out, and not appear in your final answer.

Solution:
ρ1 =

{
m 7→ 1; n 7→ 2

}
cf = 〈x→ y→ (m * x) + (n * y), ρ1〉

ρ2 =
{
m 7→ 1; n 7→ 2; f 7→ cf ; x 7→ 3

}
cy = 〈y→ (m * x) + (n * y), ρ2〉

ρ3 =
{
m 7→ 1; n 7→ 2; f 7→ cf ; y 7→ cy

}
ρ3 is the final environment.

Page 5

CS421 Spring 2014 Midterm #1 NetID:

Problem 4. (16 points)

(a) (7 points) Write a function split sum : int list -> (int -> bool) -> int

* int that takes a list of integers and returns a pair of integers. The first integer
in the pair is the sum of all numbers in the input list l where the input function f

returns true. The second is the sum of all remaining numbers that f return false.
The function is required to use (only) forward recursion (no other form of recursion).
You may not use any library functions.

let rec split_sum l f = ...;;

val split_sum : int list -> (int -> bool) -> int * int = <fun>

split_sum [1;2;3] (fun x -> x>1);;

- : int * int = (5, 1)

Solution:

let rec split_sum l f =

match l with [] -> (0,0)

| x::xs -> (match split_sum xs f

with (m,n) ->

if f x then (m+x,n)

else (m,n+x))

Page 6

CS421 Spring 2014 Midterm #1 Name:

Problem 4 (cont.)

(b) (9 points) Write a value split sum base : int * int and function split sum rec

: ((int -> bool) -> int -> int * int -> int * int such that (fun l ->

fun f -> List.fold right (split sum rec f) l split sum base) computes the
same solution as split sum defined in (a). There should be no use of recursion or
library functions in the solution to this problem. The type of List.fold right is
(’a -> ’b -> ’b) -> ’a list -> ’b -> ’b.

let split_sum_base = ...;;

val split_sum_base : int * int = ...

let split_sum_rec = ...;;

val split_sum_rec : (int -> bool) -> int -> int * int -> int * int = <fun>

let split_sum l f = List.fold_right (split_sum_rec f) l split_sum_base;;

val split_sum : int list -> (int -> bool) -> int * int = <fun>

split_sum [1;2;3] (fun x -> x>1);;

- : int * int = (5, 1)

Solution:

let split_sum_base = (0,0)

let split_sum_rec =

fun f -> fun x -> fun (r1,r2) ->

if f x then (r1+x,r2)

else (r1,r2+x)

Page 7

CS421 Spring 2014 Midterm #1 NetID:

Problem 5. (10 points)
Consider the following OCaml function:

let apply_to_two g = g 2;;

val apply_to_two : (int -> ’a) -> ’a = <fun>

Write the function
apply to two k : (int -> ’a -> ’b) -> ’a -> ’b

that is the CPS transformation of the above code. Be careful to take note of the type of
the function apply to two k, and all its arguments.

Solution:

let apply_to_two_k gk k = gk 2 k;;

Page 8

CS421 Spring 2014 Midterm #1 Name:

Workspace

Page 9

CS421 Spring 2014 Midterm #1 NetID:

Problem 6. (17 points)
The Abstract Syntax Trees for MicroML expressions are given by the following OCaml
(redacted) type:

type exp =

| VarExp of string (* variables *)

| ConstExp of const (* constants *)

. . .

| AppExp of exp * exp (* exp1 exp2 *)

. . .

In addition to having abstract syntax trees for the expressions of MicroML, we need to
have abstract syntax trees for the type of continuations and expressions in CPS.

type cps_cont =

. . .

| ContCPS of string * exp_cps (* FUN x -> exp_cps *)

and exp_cps =

VarCPS of cps_cont * string (* k x *)

| ConstCPS of cps_cont * const (* k c *)

. . .

| AppCPS of cps_cont * string * string (* x y k *)

. . .

The augmentation of the constructors with a place for a continuation, and the replacment
of general expression arguments by variable arguments are the changes necessary to
guarantee that terms built in this type represent expressions in CPS.

When transforming a function into CPS, it is necessary to expand the arguments to
the function to include one that is for passing the continuation to it. We represent this
variable by an integer rather than a string. It really is a different type of variable because
it is always internally generated and it is to supply a continuation and not an expression.
When transforming an expression, we will take in and hand back an integer giving the
next integer available to be used for a continuation variable.

Mathematically we represent CPS transformation by the functions [[e]]κ, which calculates
the CPS form of an expression e when passed the continuation κ. κ does not represent a
programming language variable, but rather a complex expression describing the current
continuation for e.

In MicroML, we will uniformly use left-to-right evaluation. Therefore, to evaluate an
application, first evaluate the function, e1, to a closure, then evaluate e2 to a value to
which that closure is applied. We create a new continuation that takes the result of e1
and binds it to v1, then evaluates e2 and binds it to v2. Finally, v1 is applied to v2 and,

Page 10

CS421 Spring 2014 Midterm #1 Name:

since the CPS transformation makes all functions take a continuation, it is also applied
to the current continuation κ. Implement this rule.

[[e1 e2]]κ = [[e1]]fun v1 -> [[e2]]fun v2 -> v1 v2 κ
Where

v1 is fresh for e2 and κ
v2 is fresh for v1 and κ

string_of_exp_cps (fst (cps_exp (AppExp (VarExp "f", VarExp "x"))

(ContVarCPS 0) 1));;

- : string = "(FUN a -> (FUN b -> a b _k0)) x) f"

By v being fresh for an expression e, we mean that v needs to be some variable that
is NOT free in e. You may use the function freshFor : string list -> string

that, when given a list of names, will generate a name that is not in the list. You may
use freeVarsInExp : exp -> string list and freeVarsInContCPS : cps cont ->

string list and freeVarsInExpCPS : exp cps -> string list for calculating the
free variables in an expression, a continuation and a CPS-transformed expression respec-
tively.

Write the OCaml code for the function application case
cps exp: exp -> cps cont -> int -> exp cps * int

let rec cps_exp e k kx =

match e with

Solution:

(*[[e1 e2]]k = [[e1]]_fun v1 -> [[e2]]_fun v2 -> v1 v2 k*)

AppExp (e1,e2) ->

(* make sure v1 does not appear in e2 or k *)

let v1 = freshFor (freeVarsInContCPS k @ freeVarsInExp e2) in

(* make sure v2 is not v1 and does not appear in k *)

let v2 = freshFor (v1 :: freeVarsInContCPS k) in

(* v1 v2 k *)

let app_cps = AppCPS (k, v1, v2) in

(* fun v2 -> v1 v2 k *)

let e2cont = ContCPS (v2, app_cps) in

(* [[e2]]_fun v2 -> v1 v2 k *)

let (e2cps, ky) = cps_exp e2 e2cont kx in

(* fun v1 -> [[e2]]_fun v2 -> v1 v2 k *)

let e1cont = ContCPS (v1, e2cps) in

(* [[e1]]_fun v1 -> [[e2]]_fun v2 -> v1 v2 k *)

cps_exp e1 e1cont ky

Page 11

CS421 Spring 2014 Midterm #1 NetID:

Problem 7. (13 points)

(a) (6 points) Give an OCaml data type to represent non-empty lists. You may not use
the existing type of lists in OCaml.

Your representation should be exact: every non-empty list should have a unique
representation using your data type, and every thing that could be represented by
your type should be a non-empty list.

Solution:

type ’a nonemptylist = First of ’a

| More of (’a * ’a nonemptylist)

(b) (7 points) Write a function prod : int nonemptylist -> int that multiplies all
the integers in an int nonemptylist.

Solution:

let rec prod nelist =

match nelist with First n -> n

| More (n, nel) -> n * prod nel

Page 12

CS421 Spring 2014 Midterm #1 Name:

Workspace

Page 13

CS421 Spring 2014 Midterm #1 NetID:

Problem 8. (17 points)
Give a type derivation for the following type judgment:

{ } |- let x = true in (fun f -> (f x) * 7) : (bool -> int) -> int

You may use the attached sheet of typing rules. Label every use of a rule with the rule
used. You may abbreviate, provided it must be totally clear which rule is meant by
which abbreviation. You may find it useful to break your derivation into pieces. If you
do, give names to your pieces, which you may then use in describing the whole. Your
environments should be mathematical mappings here, and NOT implementations as you
might find in a program.

Solution:

Const
{ } ` true:bool

Var
{f:bool -> int;

x:bool} `
f:bool -> int

Var
{f:bool -> int;

x:bool} `
x:bool

App
{f:bool -> int;

x:bool} `
f x:int

Const
{f:bool -> int; x:bool} `
7:int

Arith
{f:bool -> int; x:bool} ` (f x) * 7:int

Fun
{x:bool} ` (fun f -> (f x) * 7)

: (bool -> int) -> int
Let

{ } ` let x = true in (fun f -> (f x) * 7) : (bool -> int) -> int

Page 14

CS421 Spring 2014 Midterm #1 Name:

Workspace

Page 15

CS421 Spring 2014 Midterm #1 NetID:

9. (10 points (bonus)) Consider the following OCaml code extended from Problem 3:

let m = 1;;

let n = 2;;

let f x y = (m * x) + (n * y);;

let y = f 3;;

y 2;;

Starting from the environment you gave in Problem 3, show step by step how the
application of y 2 would be evaluated. You may use the update operator here.

Solution: From Problem 3, we have

ρ1 =
{
m 7→ 1; n 7→ 2

}
cf = 〈x→ y→ (m * x) + (n * y), ρ1〉

ρ2 =
{
m 7→ 1; n 7→ 2; f 7→ cf ; x 7→ 3

}
cy = 〈y→ (m * x) + (n * y), ρ2〉

ρ3 =
{
m 7→ 1; n 7→ 2; f 7→ cf ; y 7→ cy

}
Let

ρ4 =
{
y 7→ 2

}
+ ρ2

=
{
m 7→ 1; n 7→ 2; f 7→ cf ; x 7→ 3; y 7→ 2

}
Then we have

Eval(y 2, ρ3) = Eval(App(〈y→ (m * x) + (n * y), ρ2〉, 2), ρ3)
= Eval((m * x) + (n * y),

{
y 7→ 2

}
+ ρ2)

= Eval((m * x) + (n * y), ρ4)
= Eval((1 * 3) + (2 * 2), ρ4)
= Eval(7, ρ4)
= 7

Page 16

CS421 Spring 2014 Midterm #1 Name:

Scratch Space

Page 17

CS421 Spring 2014 Midterm #1 NetID:

Workspace

Page 18

CS421 Spring 2014 Midterm #1 Name:

A Monomorphic Typing Rules

Constants:

Γ ` n : int
Const

where n is an integer constant

Γ ` true : bool
Const

Γ ` false : bool
Const

Variables:

Γ ` x : τ
Var

where τ = Γ(x)

Primitive Operators ⊕ ∈ {+,−, ∗, mod, . . .}:

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 ⊕ e2 : int
Arith

Relations (∼ ∈ {<,>,=,≤,≥}):

Γ ` e1 : τ Γ ` e2 : τ

Γ ` e1 ∼ e2 : bool
Rel

Connectives:

Γ ` e1 : bool Γ ` e2 : bool

Γ ` e1 && e2 : bool
Conn

Γ ` e1 : bool Γ ` e2 : bool

Γ ` e1 || e2 : bool
Conn

If then else rule:

Γ ` ec : bool Γ ` et : τ Γ ` ee : τ

Γ ` if ec then et else ee : τ
If

Application rule: Function rule:

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2
App

[x : τ1] + Γ ` e : τ2

Γ ` fun x -> e : τ1 → τ2
Fun

Let rule: Let Rec rule:

Γ ` e1 : τ1 [x : τ1] + Γ ` e2 : τ2

Γ ` let x = e1 in e2 : τ2
Let

[x : τ1] + Γ ` e1 : τ1 [x : τ1] + Γ ` e2 : τ2

Γ ` let rec x = e1 in e2 : τ2
Rec

Page 19

