
Lecture 12 — Objects

• Interpreting programs with objects requires a state this is
more complicated — something that mimics the combination
of stack and heap — to implement side effects correctly. In
MP7, you will modify your MJ interpreter to handle objects.
Today we will discuss the new state structure and write some
new SOS rules.

• Two-level state

• SOS rules

• Implementing inheritance

CS 421 — Class 12, 2/26/12 — 1

Exercise: Java programs
class C { int i;

int seti (int j) { i=j; return i; }
int geti () { return i; } }

class D { int f() { x = new C();
x.seti(10);
return x.geti(); // 10

}

class E { int f() { x = new C();
y = x;
x.seti(10);
return y.geti(); // 10

}

CS 421 — Class 12, 2/26/12 — 2

Exercise: Java programs (cont.)
class C { int i;

int seti (int j) { i=j; return i; }
int geti () { return i; } }

class D { int i; C c;
int seti (int j) { i=j; return i; }
C setc (C e) { c=e; return c; }
int geti () { return i; }
int getc () { return c; } }

class E { int f() { x = new D(); y = new C(); x.setc(y);
z = new D(); z.setc(y);
x.getc().seti(10);
return z.getc().geti(); // 10

}

(Syntactic note: can write these in MiniJava; just make sure all

expressions appear in assignment statements.)

CS 421 — Class 12, 2/26/12 — 3

Basics of object-oriented
programming in Java

• An object is a heterogeneous collection of values, together with associ-
ated functions.

• The functions associated with an object depend solely on the class of the
object. An object created by calling new C() contains the values given in
C’s non-static fields, and the functions defined as methods in C (ignoring
inheritance).

• Methods are called “on” an object, called the “receiver” of the method
call: e.f(e1, . . . , en) — the value of e must be an object, and is the
receiver of this call. The method called is the definition of f found in the
class of the receiver.

• When executing a method, the receiver can be referred to by the name
“this”. A field x of the receiver can be referred as this.x or x.

CS 421 — Class 12, 2/26/12 — 4

Side effects

• Side effect = change in state resulting from a method call.

• With side effects, can evaluate the same expression twice
and get different results:

• Is this always true in Java? No

“y = f(); y = f();” ≡ “y = f();”

• Side effects on the receiver of a method call is a common
and essential part of the o-o programming style.

• (Another source of side effects is static variables; MiniJava
doesn’t have these.)

CS 421 — Class 12, 2/26/12 — 5

MP5 MJ has no side effects

Theorem: In MP6 version of MiniJava: If x 6∈ e, x=e;x=e ≡
x=e. That is, for any states σ, σ′ and program π,

x=e; x=e, σ, π ⇒ σ′ iff x=e, σ, π ⇒ σ′

Lemma: Let Y = {y1, . . . , ym} be all variables in e, and σ and
σ′ two states that agree on Y (∀y ∈ Y , σ(y) = σ′(y)). Then,
for any v and π: e, σ, π ⇓ v iff e, σ′, π ⇓ v.

Proof: By induction on the structure of the SOS proof of
e, σ, π ⇓ v.

Proof of theorem: If e, σ, π ⇓ v, then x=e, σ, π ⇒ σ[v/x].
The lemma tells us that e, σ[v/x], π ⇓ v. Therefore,
x = e; x = e, σ, π ⇒ σ[v/x].

CS 421 — Class 12, 2/26/12 — 6

Stack and heap in Java

• If Java had no objects and no static variables, it would have
no side effects.

• Primitive values are placed in stack. When passed to method
as argument, value is copied to top of stack; original variable
(if any) that had that value is not altered by method call.

• Objects are placed in the heap; stack frame just contains
a pointer. When passed to method as argument, or as the
receiver, the pointer is copied to top of stack.

• Every reference to a field of an object goes through the
pointer to get to the object in the heap. The side effect
happens because the called method has a pointer to the same
memory as the caller has.

CS 421 — Class 12, 2/26/12 — 7

Stack and heap in Java

CS 421 — Class 12, 2/26/12 — 8

Two-level state in MJ

• Thus, variables of object type go through a two-stage lookup:
get pointer from stack, then get object from heap. Need to
use same idea in interpreter for MJ.

• Terminology: Instead of “stack” and “heap,” we will say “en-
vironment” and “store.” “State” is a pair of an environment
and a store (called “two-level state”).

• In MP7, will use two-level state. As in Java:

• Environment contains simple value and pointers.

• Store contains objects.

• Objects contain simple values and pointers.

• (We will not implement arrays.)

CS 421 — Class 12, 2/26/12 — 9

SOS rules
type varname = string
type classname = string
type stackvalue = IntV of int | StringV of string

| BoolV of bool | NullV | Location of location
and location = int
type environment = (varname * stackvalue) list
type heapvalue = Object of classname * environment
type store = heapvalue list
type state = environment * store

• In SOS rules, we still use σ for a state, but often write (ρ, η)
instead, with ρ for environment and η for store.

• Consider evaluation of new C. Involves putting a new object
in the store, so we must change the judgments for evaluation:

e, σ, π ⇓ v, η
or, equivalently, e, (ρ, η), π ⇓ v, η.

CS 421 — Class 12, 2/26/12 — 10

SOS rules (cont.)
type stackvalue = IntV of int | StringV of string

| BoolV of bool | NullV | Location of location
and location = int
type environment = (varname * stackvalue) list
type heapvalue = Object of classname * environment
type store = heapvalue list
type state = environment * store

• Write an expression of type state for a state that contains
variables x bound to 3 and y bound to an object of class C; C
contains fields a and b, and in y these have integer values 4
and 5.

([("x", IntV 3); ("y", Location 0)],
[("C", [("a", IntV 4); ("b", IntV 5)]])

CS 421 — Class 12, 2/26/12 — 11

SOS rules (cont.)

• Give the SOS rule for new:

(New) new C(), (ρ, η), π ⇓

• New form of SOS rules reflected in new type of eval:
let rec eval (e:exp) ((env,sto) as sigma:state) (prog:program)

: stackvalue * store =

• and the corresponding clause in eval (you can assume any
auxiliary functions you think useful):

| NewId c ->

(Refer to MP7 handout for solutions)

CS 421 — Class 12, 2/26/12 — 12

Threading the store

• The major new thing is that evaluation of expressions can
have side effects, in particular, they can cause the store
to change. (Evaluation of an expression cannot cause the
environment to change.)

• Therefore, need to take the store from any expression eval-
uation and pass it along to the next expression evaluation.
Can never discard any changes that occur in the store.

(Binop-Less) e1 < e2, (ρ, η), π ⇓ BoolV (i1 < i2), η′′

e1, (ρ, η), π ⇓ IntV (i1), η′

e2, (ρ, η′), π ⇓ IntV (i2), η′′

CS 421 — Class 12, 2/26/12 — 13

SOS rules (v. 2) (cont.)
(Not) !e, (ρ, η), π ⇓

(Int-Mult) e1 * e2, (ρ, η), π ⇓

CS 421 — Class 12, 2/26/12 — 14

SOS rules (v. 2) (cont.)
(Var) x, (ρ, η), π ⇓

(Field) x, (ρ, η), π ⇓

(Method-Call)

e0.f(e1, . . . , en), (ρ, η), σ, π ⇓ v

(Refer to MP7 handout for solutions)

CS 421 — Class 12, 2/26/12 — 15

SOS rules (v. 2) (cont.)

• Rules for statements actually don’t change — they always
passed the state along from one to the next — except for
assignment.

(VarAsgn) x=e, (ρ, η), π ⇒

(FieldAsgn) x=e, (ρ, η), π ⇒

(Refer to MP7 handout for solutions)

CS 421 — Class 12, 2/26/12 — 16

Inheritance in Java
// EXAMPLE 1
class B {

string f() { return this.g(); }
string g() { return "B"; } }

class C extends B {
string g() { return "C"; } }

x = new B(); y = new C();
x.f(); // B
y.f(); // C

// EXAMPLE 2
class B { B aB;

void r() { aB = this; }
string s() { return aB.g(); }
string g() { return "B"; } }

class C extends B {
string g() { return "C"; } }

x = new B(); y = new C(); x.r(); y.r();
x.s(); // B
y.s(); // C

CS 421 — Class 12, 2/26/12 — 17

Inheritance in Java (cont.)

// EXAMPLE 3
class B {

B aB;
void q(B x) { aB = x; }
string s() { return aB.g(); }
string g() { return "B"; } }

class C extends B {
string g() { return "C"; } }

x = new B(); y = new C();
x.q(x); x.s(); // B
x.q(y); x.s(); // C
y.q(y); y.s(); // C
y.q(x); y.s(); // B

CS 421 — Class 12, 2/26/12 — 18

Inheritance in Java (cont.)

// EXAMPLE 4
class B {

string f() { return this.g(); } }
string g() { return "B"; } }

class C extends B {
B b;
string g() { return "C"; }
string f() { return b.g(); }
void h(B y) { b = y; } }

x = new B(); y = new C();
y.h(y); y.f(); // C
y.h(x); y.f(); // B

CS 421 — Class 12, 2/26/12 — 19

Principles of inheritance in Java and
MJ

• Inheriting fields and methods:

• Fields of all superclasses are included in the object.

• The methods associated with an object include those of its
class and all superclasses; if there is more than one method
with the same name, the “closest” one is called.

• Changes in SOS rules (and in functions in MP 6):

• To evaluate new C(), create an object consisting of all fields
of C and inherited fields; class of the new object is still C.

• To call e0.f(e1, . . . , en), evaluate e0 and find its class; look
for f in that class, or, if not found, in its superclass, and so
on, until a definition of f is found.

CS 421 — Class 12, 2/26/12 — 20

Wrap-up

• Today we discussed:

• implementing objects using two-level store

• We discussed it because:

• Two-level store is necessary to implement objects correctly (i.e. with
side effects).

• What to do now:

• In MP7, you will modify your MP6 interpreter to use the
two-level store, then add object-oriented features like object
creation and fields.

CS 421 — Class 12, 2/26/12 — 21

