
CS 421 Spring 2013 Midterm 2

Monday, April 1, 2013

Name

NetID

• You have 70 minutes to complete this exam

• This is a closed book exam.

• Do not share anything with other students. Do not talk to other students. Do not look
at another student’s exam. Do not expose your exam to easy viewing by other students.
Violation of any of these rules will count as cheating.

• If you believe there is an error, or an ambiguous question, seek clarification from one of the
TAs. You must use a whisper, or write your question out.

• Including this cover sheet, there are 7 pages to the exam. Please verify that you have all 7
pages.

• Please write your name and NetID in the spaces above, and at the top of every page.

Question Value Score

1 20
2 25
3 15
4 20
5 10
6 10

Total 100

1

CS 421 Midterm 2 Name:

1. (20 pts) Fill in the blanks:

(a) The three stages of the back-end of a compiler are, in order:

i. translation from AST to intermediate representation (IR)

ii. machine-independent optimization

iii. code generation, or gen

(b) A major disadvantage of reference-counting is its inability to handle

cyclic data structures.

(c) Mark-and-sweep garbage collection takes time proportional to the size of

the heap, while stop-and-copy g.c. takes time proportional to the size of the reachable

data.

(d) Normally, the statements “x = f(0);” and “{ x = f(0); x = f(0); }” are equiva-

lent. However, they may give different results if f has side effects.

(e) If A is declared in C as int[5][10], and integers are four bytes, then A[i][j] is at

location address(A) + i*40 + j*4.

(f) Programs can be verified in a proof system whose judgments have the form “P {A }Q”.

These judgments are called Hoare triples. P {A }Q means if P is true, then Q will

be true after A finishes executing. However, it does not say that A actually finishes

executing; A could go into an infinite loop (and make the judgment vacuously true). For

this reason, P {A }Q is said to express the “partial correctness” of A.

2

CS 421 Midterm 2 Name:

2. (25 pts) In this question, we will ask you to fill in SOS rules in the style of MP6 (MiniJava
interpretation with one-level store), MP7 (two-level store), and MP8 (compilation). As a
reminder, the judgments in these three systems are:

Expressions Statements
One-level store (MP6) e, σ, π ⇓ v S, σ, π ⇒ σ′

Two-level store (MP7) e, (ρ, η), π ⇓ v, η′ S, (ρ, η), π ⇒ ρ′, η′

Compilation (MP8) e, loc code S,m code,m′

Specifically, for each of the three assignments, we will ask you to give rules for the if state-
ment, which you implemented in that assignment, and for while, which you didn’t. For if

in MP6 and MP7, you may recall that there are two rules, one for the false case and one for
the true case; for MP8, there is just one compilation rule. while is similar: for interpretation
(MP6 and 7), there are two rules, one for when the condition is true and one for when it is
false. The rules for while are also different in that they include a recursive execution of the
while statement itself. We have filled in that line for you. Again, for compilation, there is
just one rule (and it is not recursive). In all three parts of this problem, you need to fill in
the blank lines.

(a) (6 pts) One-level store:

if (e) S1 else S2, σ, π ⇒ σ′

e, σ, π ⇓ True

S1, σ, π ⇒ σ′

if (e) S1 else S2, σ, π ⇒ σ′

e, σ, π ⇓ False

S2, σ, π ⇒ σ′

while (e) S, σ, π ⇒ σ′′

e, σ, π ⇓ True

S, σ, π ⇒ σ′

while (e) S, σ′, π ⇒ σ′′

while (e) S, σ, π ⇒ σ

e, σ, π ⇓ False

3

CS 421 Midterm 2 Name:

(b) (6 pts) Two-level store:

if (e) S1 else S2, (ρ, η), π ⇒ ρ̂, η̂

e, (ρ, η), π ⇓ True, η′

S1, (ρ, η′), π ⇒ ρ̂, η̂

if (e) S1 else S2, (ρ, η), π ⇒ ρ̂, η̂

e, (ρ, η), π ⇓ False, η′

S2, (ρ, η′), π ⇒ ρ̂, η̂

while (e) S, (ρ, η), π ⇒ ρ̂, η̂

e, (ρ, η), π ⇓ True, η′

S, (ρ, η′), π ⇒ ρ′′, η′′

while (e) S, (ρ′′, η′′), π ⇒ ρ̂, η̂

while (e) S, (ρ, η), π ⇒ η′

e, (ρ, η), π ⇓ False, η′

(c) (7 pts) Compilation

if (e) S1 else S2, m il @ [CJUMP loc, m+|il|+1, m′ + 1] @ il1

@ [JUMP m′′] @ il2 , m′′

e, loc il

S1, m+|il|+1 il1, m′

S2, m′+1 il2, m′′

while (e) S, m [JUMP m′] @ il2 @ il1 @ [CJUMP loc, m+1, m′+|il1|+1], m′ + |il1| + 1

e, loc il1

S, m+1 il2, m′

4

CS 421 Midterm 2 Name:

3. (15 pts) These questions concern the substitution model for evaluation of MiniOCaml (MP
9).

(a) (6 pts) In this model, some expressions are designated as “values,” which means that
they are considered to be fully evaluated and need no more simplification. Mark each of
the following expressions as V for value or NV for not value:

V 3

NV 3+4

NV [3+4; 5]

V fun x -> 3+4

V fun x -> let y=1 in y+2

NV (fun x -> f 4)(fun x -> x+x)

(b) (14 pts) Some of the SOS rules for the substitution model for MiniOCaml are given at
the bottom of the next question (just to remind you what they look like). Give SOS
rules for two expressions (where you may assume x and y are different):

• let x = e and y = e′ in e′′ evaluates e and e′ in the same environment, and then
evaluates e′′ with x and y bound to their values. (This is how let with multiple
declarations works in OCaml.)

• let* x = e and y = e′ in e′′ is “sequential let;” it evaluates e as above, but then
evaluates e′ in an environment in which x has its new value; then it evaluates e′′ as
before.

let x = e and y = e′ in e′′ ⇓ v

e ⇓ v1
e′ ⇓ v2
e′′[v1/x][v2/y] ⇓ v

let* x = e and y = e′ in e′′ ⇓ v
e ⇓ v1
e′[v1/x] ⇓ v2
e′′[v1/x][v2/y] ⇓ v

5

CS 421 Midterm 2 Name:

4. (20 pts) Give the complete evaluation tree for the following MiniOCaml expression, using
the substitution model. The rules you will need are given below. To save writing, you may
refer to the expression denoted e0 by just writing e0. Finally, note that we have filled in one
expression in this evaluation — which happens to be the longest expression that shows up.
The lengths of the blank lines are not related to the sizes of the expressions that go there.

Let e0 be if x=0 then fun f -> f 10 else fun f -> f x.

((fun x -> e0) 0) (fun x -> x+x) ⇓ 20

(fun x -> e0) 0 ⇓ fun f -> f 10

fun x -> e0 ⇓ fun x -> e0

0 ⇓ 0

if 0=0 then fun f -> f 10 else fun f -> f 0 ⇓ fun f -> f 10

0 = 0 ⇓ True

0 ⇓ 0

0 ⇓ 0

fun f -> f 10⇓fun f -> f 10

fun x -> x+x ⇓fun x -> x+x

(fun x -> x+x) 10 ⇓ 20

fun x -> x+x ⇓ fun x -> x+x

10 ⇓ 10

10+10 ⇓ 10+10

10 ⇓ 10

10 ⇓ 10

(Const) Const x ⇓ Const x (Fun) Fun(a,e) ⇓ Fun(a,e) (δ) e + e′ ⇓ v + v′

e ⇓ v
e′ ⇓ v′

(δ) e = e′ ⇓ v = v′

e ⇓ v
e′ ⇓ v′

(If) If(e1, e2, e3) ⇓ v
e1 ⇓ True
e2 ⇓ v

(App) e e′ ⇓ v
e ⇓ Fun(a, e′′)
e′ ⇓ v′
e′′[v′/a] ⇓ v

6

CS 421 Midterm 2 Name:

5. (10 pts) Give the loop invariant of this loop; mathematical notation is best, but you can use
English as long as your answer is clear and precise. Then give a termination function.

max = 0 ∧ i = 1 ∧ n > 1 {
while (i < n) {

if (a[i] > a[max])

max = a[i]; /* corrected to max = i; */
i = i+1;

}

} ∀0 ≤ j < n.a[max] ≥ a[j]

Invariant: ∀0 ≤ j < i.a[max] ≥ a[j]

Termination function: T(max, i, n) = n− i

7

CS 421 Midterm 2 Name:

6. (10 pts) Fill in the v-tables for these classes, by drawing arrows from each entry in the v-table
to one of the function definitions (as we did in class).

class C {

f () {...}

g () {...}

}

f in C

g in C

class D extends C {

h () {...}

f () {...}

}

f in D

g in C

h in D

class E extends D {

i () {...}

g () {...}

}

f in D

g in E

h in D

i in E

class F extends E {

i () {...}

g () {...}

}

f in D

g in F

h in D

i in F

8

