
CS 421 Spring 2011 Final

Friday, May 6, 2011

Name

NetID

• You have 180 minutes to complete this exam

• This is a closed book exam.

• Do not share anything with other students. Do not talk to other students. Do not look
at another student’s exam. Do not expose your exam to easy viewing by other students.
Violation of any of these rules will count as cheating.

• If you believe there is an error, or an ambiguous question, seek clarification from one of the
TAs. You must use a whisper, or write your question out.

• Including this cover sheet, there are 18 pages to the exam. Please verify that you have all 18
pages.

• Please write your name and NetID in the spaces above, and at the top of every page.

Question Value Score

1 20
2 20
3 10
4 10
5 20
6 10
7 30
8 10
9 10 + 10 XC
10 10
11 10
12 10

Total 170 + 10XC

1

CS 421 Final Name:

1. (20 pts) (Recursive functions on lists)

(a) Write a function sum2 that turns a list of integer lists into a list of integers, by taking
the sum of the first two elements of each of the contained lists.

sum2 [[1;2;3;4]; [5;6]; [7;8;9]] ==> [3; 11; 15]

Assume each contained list has at least two elements.

i. Give the type of sum2

ii. Write this function directly using only recursion

iii. Write this using List.map.
(Note: the type of List.map is (’a -> ’b) -> ’a list -> ’b list)

2

CS 421 Final Name:

(b) Write a different version of sum2 in which the contained lists are not guaranteed to have
two elements; if they have fewer, they are just ignored.

sum2b [[1;2;3;4]; [5]; [6;7]; []; [8;9;10]] ==> [3; 13; 17]

i. Give the type of sum2b

ii. Write this function directly using only recursion

iii. Write this using List.fold right (it cannot be written using List.map).
(Note: the type of List.fold right is (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b)

3

CS 421 Final Name:

2. (20 pts) (Higher-order functions) You are given this type definition for binary trees with
labelled leaves:

type ’a tree = Leaf of ’a | Node of ’a tree * ’a tree

(a) Write a function labellengs: string tree -> int tree. labellengs t is a tree
with the same shape as t, whose leaf nodes contain the lengths of the corresponding
labels in t. (Use function String.length to find the length of a string.)

let t = Node(Leaf "abc", Node(Leaf "a", Leaf "bc"))

labellengs t ==> Node(Leaf 3, Node(Leaf 1, Leaf 2))

(b) Write higher-order function treemap that take a function f and applies it to the value
in each leaf node:

let it = treemap String.length t

==> Node(Leaf 3, Node(Leaf 1, Leaf 2))

treemap (fun x -> x+1) it

==> Node(Leaf 4, Node(Leaf 2, Leaf 3))

i. Define treemap

ii. Give the polymorphic type of treemap

4

CS 421 Final Name:

(c) Write the function height: ’a tree -> int. The height of a tree is the length of the
longest path from the root to a leaf node. (A tree consisting of a single Leaf node has
height zero.) You can assume the function let max x y = if x > y then x else y

height t ==> 2

(d) Higher-order function treefold is analogous to fold right on lists. Specifically, treefold
f g t returns a value obtained by applying f to the values in leaf nodes, and applying
g to the pair of values returned from the children of an internal node.

let t1 = Node (Leaf 4, Node (Leaf 2, Leaf 3))

treefold string_of_int (fun s1 s2 -> s1 ^ "," ^ s2) t1

==> "4,2,3"

i. Use treefold to define height:

let height = treefold _____________ ________________________

ii. Define treefold

iii. Give the polymorphic type of treefold

5

CS 421 Final Name:

3. (10 pts) (Computation as simplification) Use these simplification rules:

• (let) let x = v in e ⇒ e[v/x] (v is a value)

• (β-value) (fun x -> e) v ⇒ e[v/x] (v is a value)

• (delta) Built-in operations: 1+1 ⇒ 2, 1>2 ⇒ false, hd [1;2;3] ⇒ 1, etc

to simplify the following expression:

let compose = fun f -> fun g -> fun x -> (let a = g x in f a a)

in compose (+) hd [3;4]

(Hint : Our solution has 7 steps.)

6

CS 421 Final Name:

4. (10 pts) (Type-checking) Use the type rules of OCaml, given here:

Variable: Γ ` x : τ, if Γ(x) = σ and τ ≤ σ

Application:

Γ ` e1e2 : τ
Γ ` e1 : τ ′ → τ
Γ ` e2 : τ ′

Abstraction:

Γ ` fun x -> e : τ → τ ′

Γ[x : τ] ` e : τ ′

Tuple:

Γ ` (e1, e2) : τ1 ∗ τ2

Γ ` e1 : τ1

Γ ` e2 : τ2

Let:

Γ ` let x=e in e′ : τ ′

Γ ` e : τ
Γ[x : GENΓ(τ)] ` e′ : τ ′

to prove the following. (You may use names like Γ1 to abbreviate type environments, to save
some writing; be sure to say clearly what the abbreviations stand for.)
Be sure to label each line with the rule you used to infer it.

Γ0 ` let f = fun x -> fun y -> (x,y) in f 3 ”ab” : int ∗ string

7

CS 421 Final Name:

5. (20 pts) (Lexing) Give DFAs and regular expressions (in ocamllex notation) for the following
sets of tokens; you do not need to label any of the nodes, but write the start node on the left.

(a) An identifier in OCaml is either a lower-case letter followed by any number of letters or
digits, or a non-empty sequence of the symbols +, -, *, or / (with no spaces) surrounded
by parentheses.

Regex:

DFA:

(b) A character literal is one of the following contained in single quotes: a single character
other than \, or a \ followed by either one of the letters n, t, or r, or by exactly three
digits.
Note that in regular expressions single quote and backslash can be escaped using a
backslash (\\ and \’).

Regex:

DFA:

8

CS 421 Final Name:

6. (10 pts) (Grammars) A grammar for arithmetic expressions should have these properties, if
possible:

a. It should be unambiguous

b. It should be LL(1)

c. It should enforce left-associativity of + and *

d. It should enforce precedence of * over +

None of the following grammars satisfies all of these criteria. For each grammar, list all the
properties that it fails to satisfy.

(a) E → id | E + id | E × id | (E)

Fails

(b) E → id | id + E | id × E | (E)

Fails

(c) E → T + E | T
T → P × T | P
P → id | (E)

Fails

(d) E → id F | (E)
F → ε | + E | × E

Fails

(e) E → E + T | T
T → T × P | P
P → id | (E)

Fails

(f) E → T E’
E’ → ε | + E
T → P T’
T’ → ε | × E
P → id | (E)

Fails

9

CS 421 Final Name:

7. (30 pts) (Bottom-up parsing) This is a right-recursive stratified grammar:

E → T | T + E
T → P | P * T
P → id

(a) Following is the parse tree for sentence x+y*z. Circle and number the handles of this
tree.

10

CS 421 Final Name:

(b) Give the shift-reduce parse for that sentence:
(The parse tree is given here again for reference)

Action Stack (top at right) Input

Shift empty x+y*z

x +y*z

11

CS 421 Final Name:

(c) Write parse trees for these three sentences:

x*y+z x+y+z x*y*z

(d) By considering the parse trees above, give the correct action (Shift, Reduce by a given
production, Reject, or Accept) under each of the following circumstances:

Stack (top at right) Lookahead symbol Action

T + z *

x *

P *

E eof

P z

T + P * z x

12

CS 421 Final Name:

(e) The above grammar is not LL(1), but here is a left-factored version that is:

E → T E’
E’ → ε | + E
T → P T’
T’ → ε | * T
P → id

Suppose the tokens are given by this type:

type token = Id of string | Plus | Star

A recursive descent recognizer for this grammar would consist of five functions, one for
each non-terminal, each of type token list→ token list. Assume you have functions
parseT, parseT’, and parseP, and write parseE, parseE’:

let rec parseE toks =

and parseE’ toks =

and parseT toks = (* don’t need to write this one *)

and parseT’ toks = (* don’t need to write this one *)

and parseP toks = (* don’t need to write this one *)

13

CS 421 Final Name:

8. (10 pts) (Function objects) The following sort function accepts a Comparator object that it
uses for comparisons. Comparators are function objects, using the method name less instead
of apply.

interface Comparator {

public boolean less (int x, int y);

}

void sort (int[] A, Comparator c) {

... if (c.less(A[i], A[j])) ..

}

For example, for ordinary arithmetic comparisons, define this comparator:

class Less implements Comparator {

public boolean less (int x, int y) { return x < y; }

}

and use it: “int[] nums; ... sort(nums, new Less()); ...”.

Define these classes:

class LowerMag implements Comparator {

// less(x,y) if the absolute value of x is less than

// the absolute value of y. Do not use any auxiliary functions.

}

class LowerLetter implements Comparator {

// Assuming that x and y are (ASCII codes of) capital or small letters,

// less(x, y) returns true if x is an earlier letter in the alphabet

// than y, without regard to case

// To convert code for a lower-case letter to upper-case: x - ’a’ + ’A’

}

14

CS 421 Final Name:

class Or implements Comparator {

// Combines two other comparators.

// Possible use: sort(nums, new Or(new LowerLetter(), new LowerDigit()))

// This means one integer is less than the other if it is either

// a lower letter (in ASCII code) or a lower digit.

Comparator c1, c2;

public Or(Comparator c1, Comparator c2) {

this.c1 = c1; this.c2 = c2;

}

}

An integer function object is an object implementing this interface:

interface Intfun {

int apply (int i);

}

For example:

class Absval implements IntFun {

int apply (int i) { return i<0 ? -i : i; }

}

Complete this definition:

class ComposeComp implements Comparator {

// Applies a comparator after applying an integer function.

// Possible use: sort(nums, new ComposeComp(new Less(), new Absval()))

Comparator c; Intfun f;

public ComposeComp(Comparator c, Intfun f) {

this.c = c; this.f = f;

}

}

15

CS 421 Final Name:

9. (10 pts + 10 XC) (Loop invariants) Given the loop invariants for the following loop; we have
given the pre- and post-conditions:

(a) Non-destructive reversal: This loop moves A to B in reverse order.
Pre-condition: i = 0 & n = |A| & n = |B|
Post-condition: ∀0 ≤ k < n.B[k] = A[n− 1− k]

while (i<n) { B[n-i-1] = A[i]; i = i+1; }

Invariant:

(b) Calculate average: Here, A is an array of doubles.
Pre-condition: m = 0.0 & i = 0
Post-condition: m = mean of A

while (i<A.length) { m = m + A[i]/A.length; i = i+1; }

Invariant:

(c) (10pts Extra Credit) Non-destructive merge: This loops merges m elements from A
with n elements from B into array C. A and B each have an additional sentinel element
containing value “∞” which is larger than any other value contained in those arrays.
Pre-condition: |A| = m+ 1 & |B| = n+ 1 & |C| = m+ n & A[m] =∞ &

& B[n] =∞ & a = b = c = 0 & ∀0 ≤ i < m− 1.A[i] ≤ A[i+ 1] &
& ∀0 ≤ i < n− 1.A[i] ≤ B[i+ 1]

Post-condition: ∀0 ≤ i < m+ n− 1.C[i] ≤ C[i+ 1] &
& C has the same elements as A[0 . . .m− 1] and B[0 . . . n− 1]

while (a < m || b < n) {

if (A[a] < B[b]) {

C[c] = A[a];

a = a+1;

}

else {

C[c] = B[b];

b = b+1;

}

c = c+1;

}

Invariant:

16

CS 421 Final Name:

10. (10 pts) (Garbage Collection)

The diagram below shows a heap with objects. The arrows indicate pointers from one object
to another. Arrows with no source (those coming in from the right) indicate a pointer to the
object from the stack. For simplicity we assume that every object is the same size, and each
rectangle represents one object. If an object is empty, it just means we don’t care what’s in
it.

The blank diagrams are for you to fill in with the results of doing a garbage collection.
Specifically, on the blank diagram in the middle, show the result of mark-and-sweep garbage
collection. Make sure to create a free-list (order doesn’t matter). Draw an arrow from the
”Free List” box to the first free memory block, then from there draw arrows between free
memory blocks to make the list.

On the blank diagram on the right, show the result of compacting (aka stop-and-copy) garbage
collection. The diagram represents the half of the heap that is not currently in use; the objects
in the heap on the left will be copied into this space. The order in which the objects are moved
is not prescribed. Make sure you also show the pointers coming from the stack.

17

CS 421 Final Name:

11. (10 pts) (Compilation) In class, we gave the following translation schemes (among others) for
translating source programs into an intermediate representation (IR).

[e] : translate expression e to IR; returns pair (IR instruction list, location of value)

[S] : translate statement S to IR

[S]L : translate statement S in context of a loop or switch statement, where L is the target of
a break statement

[e]Lt,Lf : translate expression e to code that branches to Lt if e is true, or Lf otherwise (the
short-circuit evaluation scheme)

The instructions in our intermediate representation were: x = n; x = y; x = y + z (for any
operation +); JUMP L; CJUMP x, L1, L2; and x = LOADIND y.

Give the translation for the following constructs. (You may use functions getloc() and
getlabel() to get fresh memory locations and fresh instruction labels, respectively.)

(a) Python’s while statement can have the form “while (e) S else S1”. S1 is executed
after the while loop is done (regardless of whether the loop body was executed even once).
This is just like having statement S1 following the while loop, except for one thing: if
the loop is terminated by a break statement, S1 is not executed and execution continues
at the statement following the while loop. S1 cannot contain a break statement.

Translate this form of while:

[while (e) S else S1] =

18

CS 421 Final Name:

(b) Another variation on the while loop is one where the while statement can be followed
by n statements: while (e) S else S1 . . . Sn. Inside the loop, break i immediately
jumps to Si and then to the very end; upon normal termination of the loop (with no
break), all the Si are skipped. There is no plain break statement (with no number).
The statements Si cannot contain break statements.

In such a while loop, the body (S) has to be compiled in a context in which all these
break labels are given. We are asking you to translate a simpler version, in which there
are exactly two statements following the loop; S needs to be compiled using a scheme of
the form [S]L1,L2. Give the following translation:

[while (e) S else S1; S2] =

[break 1]L1,L2 =

[break 2]L1,L2 =

19

CS 421 Final Name:

12. (10 pts) (Fill in the blanks)

(a) In a dynamically-typed language, the expression “False && (1/0)” will not produce a

run-time error, so long as boolean expressions are evaluated using

evaluation.

(b) When the β rule is used to simplify expressions, rather than the β-value rule, it is called

evaluation.

(c) In Java, C++, and some other languages (but not C), you can use the same function

name for different functions as long as the number or type of the arguments is different.

This is called .

(d) In a dynamically-typed languages, operations like + need to be able to check the types

of their operands; to allow this, values must be .

(e) In C++, a checked downcast can be applied to an object only if that object’s class has

at least one function.

(f) In object-oriented languages, dynamic binding of method calls is implemented using a

table of function pointers that is called a .

(g) For portability, languages like Java and C# are implemented by translating them to

virtual machine code, which can be interpreted; to improve efficiency, the implemen-

tations usually translate this VM code to native machine code, in a process called

compilation.

(h) In implementations of functional languages, higher-order functions are represented by a

pair containing a function pointer and an environment; this pair is called

a .

(i) A serious limitation of reference counting is that it cannot recover all cells if they are

contained in structures that have .

(j) When a grammar presented to ocamlyacc is not LALR(1), ocamlyacc reports that the

language has .

20

