
Abstract: Object-oriented programs are difficult to optimize
because they execute many dynamically-dispatched calls. These
calls cannot easily be eliminated because the compiler does not
know which callee will be invoked at runtime. We have developed
a simple technique that feeds back type information from the
runtime system to the compiler. With this type feedback, the
compiler can inline any dynamically-dispatched call. Our compiler
drastically reduces the call frequency of a suite of large SELF appli-
cations (by a factor of 3.6) and improves performance by a factor
of 1.7. We believe that type feedback could significantly reduce
call frequencies and improve performance for most other object-
oriented languages (statically-typed or not) as well as for
languages with type-dependent operations such as generic arith-
metic.

1. Introduction
Object-oriented programs are harder to optimize than programs
written in languages like C or Fortran. There are two main reasons
for this. First, object-oriented programming encourages code
factoring and differential programming; as a result, procedures are
smaller and procedure calls more frequent. Second, it is hard to
optimize calls because they use dynamic dispatch: the procedure
invoked by the call is not known until runtime because it depends
on the dynamic type of the receiver. Therefore, a compiler usually
cannot apply standard optimizations such as inline substitution or
interprocedural analysis to these calls.
Consider the following example (written in pidgin C++):

class Point {
virtual float get_x(); // get x coordinate
virtual float get_y(); // ditto for y
virtual float distance(Point p);

// compute distance between receiver and p
}

When the compiler encounters the expression p->get_x(),
where p’s declared type is Point, it cannot optimize the call
because it does not know p’s exact runtime type. For example,
there could be two subclasses of Point, one for Cartesian points
and one for polar points:

class CartesianPoint : Point {
float x, y;
virtual float get_x() { return x; }
(other methods omitted)

}

class PolarPoint : Point {
float rho, theta;
virtual float get_x() {

return rho * cos(theta); }
(other methods omitted)

}

Since p could refer to either a CartesianPoint or a Polar-
Point instance at runtime, the compiler’s type information is not
precise enough to optimize the call: the compiler knows p’s
abstract type (i.e., the set of operations that can be invoked and
their signatures) but not its concrete type (i.e., the object’s size,
format, and the implementation of the operations).
Pure object-oriented languages exacerbate this problem because
every operation involves a dynamically-dispatched message send.
For example, even very simple operations such as instance vari-
able accesses, integer addition, and array accesses conceptually
involve message sends in SELF [US87], the programming language
used for this study. Consequently, a pure object-oriented language
like SELF offers an ideal test case for optimization techniques tack-
ling the problem of frequent dynamically-dispatched calls.
The rest of this paper describes our experience with a new optimi-
zation technique based on type feedback. With type feedback, our
new compiler runs large SELF programs 1.7 times faster than
without, and 1.5 times faster than the previous SELF compiler
which uses extensive compile-time type analysis instead of type
feedback. Although we have implemented type feedback only for
the pure dynamically-typed object-oriented language SELF, the
technique is language-independent and could be applied to stati-
cally-typed, non-pure languages as well.

2. Type Feedback
The key idea of type feedback is to extract type information from
executing programs and feed it back to the compiler (Figure 1).

running
program

program
source

compiler

optimization

Figure 1. Overview of Type Feedback

type information

Optimizing Dynamically-Dispatched Calls
with Run-Time Type Feedback

Urs Hölzle
Computer Systems Laboratory, Stanford University, Stanford, CA

urs@cs.stanford.edu

David Ungar
Sun Microsystems Laboratories, Mountain View, CA

ungar@eng.sun.com

In: SIGPLAN Conference on Programming Language Design and
Implementation, Orlando, FL, June 1994.

2

Specifically, we use an instrumented version of a program to
record the program’s type profile, i.e., a list of receiver types (and,
optionally, their frequencies) for every single call site in the
program. To obtain the type profile, the standard method dispatch
mechanism is extended in some way to record the desired informa-
tion, e.g., by keeping a table of receiver types per call site.
In the SELF system, no additional mechanism is needed to record
receiver types since the system uses polymorphic inline caches to
speed up dynamic dispatch. As we have observed in [HCU91],
these caches record receiver types as a side-effect. Therefore, a
program’s type profile is readily available, and collecting the type
feedback data does not incur any execution time overhead.
However, the particular way in which type feedback information is
collected is not important here; all that matters is that the informa-
tion contains a list of receiver types (and, optionally, invocation
counts) for each call site.
The program’s type profile is then fed back into the compiler to
generate optimized code. Using type feedback, the compiler can
optimize any dynamically-dispatched call (if desired) by
predicting likely receiver types and inlining the call for these
types. In the above example, the expression x = p–>get_x()
could be compiled as

if (p->class == CartesianPoint) {
// inline CartesianPoint case
x = p->x;

} else {
// don’t inline PolarPoint case because method is too big
// this branch also covers all other receiver types
x = p->get_x(); // dynamically-dispatched call

}

For CartesianPoint receivers, the above code sequence will
execute significantly faster since the original virtual function call
is reduced to a comparison and a simple load instruction. Inlining
not only eliminates the calling overhead but also enables the
compiler to optimize the inlined code using dataflow information
particular to this call site.
Some optimizations can enhance the benefits of inlining. Splitting
[CU90] copies code following the if statement into the branches
of the if, where it can profit from the more precise dataflow (or
type) information that is specific to the branches of the if.
However, splitting is limited to cases where the improved informa-
tion can be used to optimize code immediately following (or very
close to) the if statement. If the code that could benefit is further
away, all code between it and the if statement must be duplicated,
and the cost of the code increase may outweigh the benefits of the
optimization.
Another optimization, uncommon branch elimination, is more
aggressive and preserves the improved dataflow information
throughout the caller. Uncommon branch elimination was first
suggested to us by John Maloney and was implemented in Cham-
bers’ SELF-91 compiler [Cha92] and (in a somewhat different and
more aggressive form) in the SELF-93 compiler described in the
next section. The main idea is that the optimized code handles only
the predicted cases. Of course, the code still has to test for the
uncommon cases, but upon encountering such a case, it branches
to a separate (less optimized) copy of the code which does not
merge back into the optimized version. Therefore, the optimized
version’s dataflow information is not “polluted” by the pessimistic
alias and kill information caused by uncommon cases.
For example, if the type feedback information indicates that non-
Cartesian points are almost never used, the expression
x = p->get_x() could be compiled as

if (p->class != CartesianPoint) {
goto uncommon_case;
// branch to separate version of the code that handles
// non-Cartesion points and never branches back
// to this code

}

// inline CartesianPoint get_x()
x = p->x;

Now the code following this statement can be better optimized
because the compiler knows p’s class, and that get_x has no side-
effects.
Neither splitting nor uncommon branch elimination is necessary to
implement type feedback; we have presented them here merely as
examples of optimizations that profit from opportunities created by
type feedback. The SELF-93 compiler described below implements
both optimizations.
Predicting future receiver types based on past receiver types is
only an educated guess. Similar guesses are made by optimizing
compilers that base decisions on execution profiles taken from
previous runs [Wall91]. However, in our experience, type profiles
are more stable than time profiles—if a receiver type dominates a
call site during one program execution, it also dominates during
other executions. A recent study by Garrett et al. [G+94] that
measured the stability of type profiles in SELF, C++, and Cecil
programs confirms our experience.

3. Type feedback in the SELF system
This section describes the implementation of type feedback in
SELF; although our implementation makes extensive use of possi-
bilities opened by dynamic compilation, we wish to emphasize that
dynamic compilation is not needed to implement type feedback.
The reader who is not interested in the particular details of the
SELF implementation may safely skip this section and continue
with section 4. Section 5 discusses how type feedback could be
implemented in a more conventional “batch-style” compilation
environment.
Since SELF is dynamically-typed, it has no explicit notion of type.
However, the implementation maintains internal type descriptors
(called “maps”) that describe the exact format of each object (i.e.,
its storage layout, inheritance structure, etc.). In the remainder of
this paper, we will use “type” to refer to these internal implementa-
tion types. Translated into C++ parlance, “type” stands for “non-
abstract (concrete) class.”

3.1 Dynamic recompilation
The SELF-93 system uses dynamic recompilation not only to take
advantage of type feedback but also to determine which parts of an
application should be optimized at all. Figure 2 shows an overview
of the compilation process of the system. When a source method is

invoked for the first time, it is compiled quickly by a very simple,
completely non-optimizing compiler. If the method is executed
often, it is recompiled and optimized using type feedback. Some-
times, an optimized method is reoptimized to take advantage of
additional type information or to adapt it to changes in the
program’s type profile. Combining the optimizing compiler with
the fast non-optimizing compiler and dynamic recompilation

unoptimized
code

source
methods

if executed
often

if needed for
debugging [HCU92]

is first invoked
optimized

code
when method

Figure 2. Compilation in the SELF-93 system

3

allows SELF-93 to achieve high performance while keeping compi-
lation pauses in the sub-second range [Höl94].
In the following sections, we will briefly discuss our implementa-
tion of dynamic recompilation; more details can be found in
[Höl94].

3.2 When to recompile
Any dynamic recompilation system needs to decide when to
recompile code. If the system recompiles too eagerly, compilation
time is wasted; if it recompiles too lazily, performance will suffer.
SELF-93 uses invocation counts to drive recompilation. Each unop-
timized method has its own counter that is incremented in the
method prologue. When the counter exceeds a certain limit, the
recompiler is invoked to decide which method (if any) should be
recompiled. If the method overflowing its counter isn’t recom-
piled, its counter is reset to zero. Counter values decay exponen-
tially with time (i.e., the system monitors invocation rates, not pure
invocation counts).
Originally, we envisioned counters as a first step, to be used only
until a better solution was found. However, in the course of our
experiments we came to realize that the trigger mechanism
(“when”) is much less important for good recompilation results
than the selection mechanism (“what”).

3.3 What to recompile
To find a “good” candidate for recompilation, the recompiler walks
up the call chain and inspects the callers of the method triggering
the recompilation. A caller is recompiled if it performs many calls
to unoptimized or small methods (the hope being that these calls
will be eliminated), or if it creates closure objects. (SELF imple-
ments all control structures using message passing and closures;
when control structures are inlined, the closures can typically be
eliminated.) A simpler recompilation strategy would always
recompile the method whose counter overflowed, since it obvi-
ously was invoked often. But suppose that the method just returns
a constant. Optimizing this method would not gain much; rather,
the method should be inlined into its caller, and thus it is necessary
to inspect the callers before deciding what to recompile.
If a recompilee is found, it is (re)optimized, and the old version is
discarded. During the compilation, the compiler marks the restart
point (i.e., the point where execution will be resumed) and tries to
compute the contents of all live registers at that point. If this is
successful,† the reoptimized method replaces the corresponding
unoptimized methods on the stack, possibly replacing several
unoptimized activation records with a single optimized activation
record. (This process is the reverse of dynamic deoptimization as
described in [HCU92]; that paper also describes how the compiler
represents the source-level state of optimized code.)
The system tries to optimize an entire call chain from the top
recompilee down to the current execution point. (Usually, the
recompiled call chain is only one or two compiled methods deep.)
Thus, if the newly optimized method isn’t at the top of the stack,
recompilation continues with the method’s callee. If the old
method cannot be replaced on the stack, it is left to finish its
current activation(s), but subsequent invocations will always use
the new, optimized version.
Finally, the recompilation system also checks to see if recompila-
tion was effective, i.e., if it actually improved the code. If the
previous and new compiled methods have exactly the same non-
inlined calls, recompilation did not really gain anything, and thus

† The compiler cannot always describe the register contents in source-level
terms since it does not track the effects of all optimizations in order to keep
the compiler simple. However, it can always detect such situations and
signal them to the recompilation system.

the new method is marked so it won’t be considered for future
recompilations.

3.4 Inlining strategies
Although type feedback enables the compiler to inline any call in
the program, not all calls should be inlined. Deciding whether to
inline a particular send is difficult for several reasons. First,
inlining one method may require other methods to be inlined as
well (e.g., to reduce closure creation overhead). Second, even if
the compiler could accurately estimate the local impact of inlining
a send, the overall performance impact may depend on the result of
other inlining decisions. For example, inlining a send may be bene-
ficial in one case but may hurt performance in another case
because other inlined sends increase register pressure so much that
important variables cannot be register-allocated.
The current SELF compiler uses a set of simple rules to guide the
inlining process. Essentially, methods are inlined if they are small,
and if the estimated size of the caller (including all methods inlined
so far) is not too big. The latter condition avoids excessive inlining
that could arise when many small methods are called.
Determining the “size” of an inlining candidate is harder in SELF
than in more traditional languages: since SELF is a pure object-
oriented language, it performs all computation via message
sending, and thus virtually every source-code token represents a
message send whose cost (both in terms of space and time) is
highly variable. To improve its estimates, the SELF compiler exam-
ines previously-compiled optimized code where available. Besides
being more accurate than source-level size estimates, this approach
also has the advantage of considering a bigger picture: typically,
the compiled method for a source method includes not only code
for the method itself but also that of inlined calls. By examining
previously-compiled code, the compiler can obtain a better esti-
mate of the ultimate space cost of an inlining decision.

3.5 Structure of the SELF-93 compiler
This section briefly describes the optimizing SELF-93 compiler
which combines simplicity with good compilation speed and good
code quality. The front end of the compiler performs a variety of
optimizations that are necessary to achieve good performance with
pure object-oriented languages—inlining (based on type feed-
back), customization [CUL89], and splitting [CU90]—and gener-
ates a graph of intermediate code nodes. The back end performs
only very few optimizations on the intermediate code before
generating machine code. In particular, the compiler does not
perform full-fledged dataflow analysis or coloring register alloca-
tion because we considered these techniques to be too expensive in
terms of compilation speed.
After computing the definitions and uses of each pseudo register,
the compiler performs the following optimizations:

• Closure analysis determines which closures can be eliminated
because they are not needed as actual runtime objects.

• Copy propagation propagates pseudo registers within basic
blocks, and singly-assigned pseudo registers globally. (These
propagations can be performed without computing full
dataflow information.)

• Dead code elimination discards nodes whose results are no
longer needed.

A simple usage-count based register allocator computes the
register assignments, and the final machine code is generated in a
single pass over the intermediate graph.
The main differences between SELF-93 and the SELF-91 compiler
described by Chambers [Cha92] are that we have substituted type
feedback for iterative type analysis, and that our back end is less
ambitious. As a result, SELF-93 is considerably simpler (11,000 vs.

4

26,000 lines of C++). However, compared to SELF-91, SELF-93 has
several shortcomings:

• Inferior local code quality. The compiler does not fill delay
slots except within fixed code patterns. Also, code often
contains branches that branch to other (unconditional) branch
instructions instead of directly branching to the final target.
Finally, values may be repeatedly loaded from memory, even
within the same basic block. This is especially inefficient if the
loaded value is an uplevel-accessed variable since an entire
sequence of loads (following the lexical chain) is repeated in
this case.

• Inferior register allocation. The register allocator is very
simple and can cause unnecessary register moves or spills.

• Redundant type tests. Since the compiler does not perform
type analysis or full dataflow analysis, a value may be tested
repeatedly for its type even though only the first test is
necessary.

It is hard to estimate the performance impact of these shortcom-
ings. However, based on Chambers’ analysis of the SELF-91
compiler [Cha92] and an inspection of the compiled code of
several programs, we believe that they slow down the large object-
oriented programs measured in this study by at least 10%. (For
programs with small integer loops, the overhead can be much
higher.) Therefore, the performance of type feedback as reported in
the next section is probably a conservative indication of what a
fully optimizing SELF compiler with type feedback could achieve.

4. Results
To evaluate the performance of the SELF-93 compiler and the
contribution of type feedback, we measured the runtime perfor-
mance of several large SELF programs (see Table A-1 in the
appendix for a short description of the benchmarks). With the
exception of the Richards benchmark, all programs are real appli-
cations that were not written for benchmarking purposes. Table 1
lists the systems used in our study.

System Description

SELF-93 The current SELF system using dynamic recompilation
and type feedback; methods are compiled by a fast
non-optimizing compiler first, then recompiled with
the optimizing compiler if necessary.

SELF-93
nofeedback

Same as SELF-93, but without type feedback and
recompilation; all methods are always optimized from
the beginning.

SELF-91 Chambers’ SELF compiler [Cha92] using iterative type
analysis; all methods are always optimized from the
beginning. This compiler has been shown to achieve
excellent performance for smaller programs.

Smalltalk-80 ParcPlace Smalltalk-80™ release 4.0, generally
regarded as the fastest commercial Smalltalk system
(based on techniques described in [DS84])

C/C++ GNU C and C++ compilers, version 2.4.5, using -O2
optimization

Lisp Sun CommonLisp 4.0™ using full optimization

Table 1: Systems used for benchmarking

4.1 Methodology
To accurately measure execution times, the programs were run
under a SPARC simulator based on the Spa [Irl91] and Shade
[CK93] tracing tools and the Dinero cache simulator [Hill87]. The
simulator models the Cypress CY7C601 implementation of the
SPARC™ architecture, i.e., the chip used in the SPARCstation-2™
workstation.
The simulator also accurately models the memory system of a
SPARCstation-2, with the exception of the cache organization.
Instead of the unified direct-mapped 64K cache of the SPARCsta-
tion-2, we simulate a machine with a 32K 2-way associative
instruction cache and a 32K 2-way associative data cache using
write-allocate with subblock placement. “Write-allocate with
subblock placement” caches allocate a cache line when a store
instruction references a location not currently residing in the cache.
This organization is used in current workstations (e.g., the DECsta-
tion 5000™ series) and has been shown to be effective for
programs with intensive heap allocation [KLS92], [Rei93],
[DTM94].
We do not use the original SPARCstation-2 cache configuration
because it suffers from large variations in cache miss ratios caused
by small differences in code and data positioning (we have
observed variations of up to 15% of total execution time). With the
changed cache configuration, these variations become much
smaller (on the order of 2% of execution time) so that the perfor-
mance of two systems can be more accurately compared.†

The execution times for the SELF programs reflect the performance
of (re-)optimized code, i.e., they do not include compile time. For
the recompiling system, the programs were run until performance
stabilized, and the next run not involving compilations was used.
(The impact of dynamic recompilation on interactive performance
is beyond the scope of this paper and will be the subject of a sepa-
rate study.) SELF-91 and SELF-93-nofeedback do not use recompi-
lation, so we used the second run for our measurements.

4.2 Impact of type feedback on execution time
To evaluate the performance impact of type feedback, we
compared the three versions of the SELF system mentioned in
Table 1. Figure 3 on the next page shows the results (Table A-2 in
the appendix contains detailed data). Comparing SELF-93 with
SELF-93-nofeedback shows that type feedback significantly
improves the quality of the generated code, resulting in a speedup
of 1.7 (geometric mean) even though SELF-93-nofeedback always
optimizes all code whereas SELF-93 optimizes only parts of the
code. (Sections 4.4 and 4.5 will analyze the reasons for the
increased performance of SELF-93 in more detail.) SELF-93 also
outperforms SELF-91 by a considerable margin, with a speedup of
1.5. Apparently, the better back end and iterative type analysis are
not enough for SELF-91 to compensate for the wealth of type infor-
mation provided by type feedback. In fact, SELF-91 is only margin-
ally faster than SELF-93-nofeedback which does not use any type
analysis. In other words, SELF-91’s type analysis appears to be
largely ineffective for the programs we measured.

4.3 Impact of type feedback on call frequency
Type feedback drastically reduces the number of calls executed by
the benchmark programs. Figure 4 shows the number of calls rela-
tive to unoptimized SELF, where each message send is imple-
mented as a dynamically-dispatched call (with the exception of

† To ensure that our choice of cache organization did not distort the results,
we measured different cache organizations, including 32K and 64K direct-
mapped caches. While absolute execution times varied, the resulting
performance ratios (e.g., SELF-93 vs. SELF-93-nofeedback) were within
10% of the ratios presented here.

5

accesses to instance variables in the receiver). Both SELF-91 and
SELF-93 run many times faster than unoptimized programs.

Whereas 10-25% of the original calls remain in SELF-91 and SELF-
93-nofeedback, SELF-93 reduces the call frequency to about 5% of
the unoptimized system. Compared to the SELF systems without
type feedback, calls are reduced by a factor of 3.6. Since SELF-93-
nofeedback performs about the same number of calls as SELF-91,
we can also assume that comparing SELF-93 to SELF-91 is fair, i.e.,
that the reduction in call frequency and execution time is entirely
due to type feedback and cannot be attributed other differences
(such as more aggressive inlining). As with performance, the
sophisticated type analysis in SELF-91 fails to give it an advantage
over SELF-93-nofeedback when it comes to eliminating calls.

4.4 Type testing overhead
Since type feedback transforms dynamically-dispatched calls into
type tests followed by inlined methods, it is interesting to look at
the characteristics of these type tests. In SELF-93, type tests are

Figure 3. Performance impact of type feedback
(all speeds relative to SELF-93-nofeedback)

faster

Geom.
mean

UI3

UI1

Typeinf

Mango

CecilInt

CecilComp

Richards

PrimMaker

DeltaBlue

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Self-91

Self-93
nofeedback

Self-93

Figure 4. Impact of type feedback on number of calls
(all numbers are relative to unoptimized SELF)

worse

Geom.
mean

UI3

UI1

Typeinf

Mango

CecilInt

CecilComp

Richards

PrimMaker

DeltaBlue

0% 5% 10% 15% 20% 25% 30% 35%

Self-91

Self-93-
nofeedback

Self-93

used in two situations: for sends inlined by type feedback (inlined
tests), and for the dispatch of non-inlined sends (dispatch tests).
The latter are used because in dynamically-typed languages it is
harder (but not impossible [Dri93]) to use indirect function calls
for dynamically-dispatched calls. Instead, SELF uses Polymorphic
Inline Caches [HCU91] which implement a dynamically-
dispatched call as a typecase statement (to determine the receiver
type) followed by a direct call. This implementation of dynamic
dispatch can compete well with the indirect-call implementation
typically used by C++ systems: on the SPARCstation-2, SELF-93
uses an average of 12 cycles per dispatched call (including cache
effects) for the programs measured, whereas a C++ virtual call
uses 10 cycles (excluding cache effects).
The average number of type tests executed per send (i.e., the
number of branches in the if statement testing for the expected
types) is very small. Figure 5 shows the distribution of the per-
benchmark averages for SELF-93-nofeedback (left boxes) and

SELF-93 (right boxes). Since we are interested in the work done per
type test sequence, the data excludes sends requiring no type test,
i.e. sends whose receiver type was known with certainty.
SELF-93-nofeedback executes some inlined type tests because it
uses static type prediction [DS84] to predict the receiver type of
certain very frequent messages. Static type prediction always
predicts for a single type, except for sends to boolean receivers
(true and false are two different types in SELF). Thus, the low
average of 1.2 tests per send in SELF-93-nofeedback is not
surprising. What is surprising, however, is that type feedback
reduces this average even more, to 1.08 tests per send. In other
words, the vast majority of inlined type tests need only one
comparison to find its target. Apparently, most sends optimized
with type feedback have only one receiver type or are dominated
by a single receiver type.
For non-inlined sends, type feedback pushes up the median
number of type tests per send from 1.35 to 1.7 tests per send. Type
feedback does not actually increase the degree of polymorphism of
sends; however, since the compiler does not inline highly polymor-
phic sends (with 5 or more receiver types) but at the same time
eliminates many of the other sends, the distribution of the
remaining sends is skewed towards higher polymorphism, and thus
the average number of type tests per send increases.
Finally, the last category of Figure 5 shows that the overall number
of type tests per send is reduced by type feedback. Does this mean
that programs optimized by type feedback perform fewer type
tests? Figure 6 shows that this is indeed the case: on average, SELF-

inlined
type tests

dispatch
type tests

overall
1

1.2

1.4

1.6

1.8

2

ty
pe

 te
sts

 p
er

 se
nd

(e
xc

lu
de

s s
en

ds
 w

/o
 ty

pe
 te

sts
)

Figure 5. Number of type tests per dispatched send

SELF-93
nofeedback

SELF-93

Box charts show the range of data (vertical lines) as well as
the 25% and 75% percentiles (end of the boxes) and the me-
dian (horizontal lines). Where the median and mean differ
significantly, we indicate the mean with a dot (•).

6

93 programs execute 27% fewer type tests. At first sight, such a
reduction seems impossible: since dispatch is implemented as a
type test followed by a call, and type feedback just transforms this
sequence into a type test followed by inlined code, it would seem
that the total number of type tests should remain exactly the same
since type feedback merely turns dispatch tests into inlined tests.
(Figure 6 confirms that many dispatch tests are indeed transformed
into inlined tests.)
Type feedback can reduce the number of type tests because the
compiler may statically know the types of the arguments of a send
inlined via type feedback. For example, suppose that a method m is
called with a constant argument. If this send is not inlined, each
send in m to the argument will require a type test since the argu-
ment’s type is not known statically. However, after m has been
inlined using type feedback, constant propagation can reach all
uses of the constant argument and eliminate the type tests. Thus,
by inserting one type feedback test, the compiler has eliminated
other type tests and has reduced the overall number of type tests. In
the benchmarks we measured, each type feedback test removed 0.8
other type tests on average, even though the compiler performs
only very rudimentary dataflow analysis. With a more sophisti-
cated analysis, this “bonus” might be even higher.

4.5 Analysis of speedup
Why does type feedback speed up programs? One reason for the
increased speed is the reduced call overhead, but how much of the
speedup is obtained by just eliminating call overhead, and how
much is due to other factors? Figure 7 shows that the sources of
improved performance can vary widely from benchmark to bench-
mark. (The data assumes a savings of 10 cycles per eliminated call
since we could not measure the exact savings per call.) Depending
on the benchmark, the reduced call overhead represents between
6% and 63% of the total savings in execution time, with a median
of 13% and an arithmetic mean of 25% (geometric mean: 18%).
The reduced number of type tests contributes almost as much to
the speedup, with a median contribution of 17% and a mean of
19%, as does the reduced number of closure creations.
Other effects (such as standard optimizations that perform better
with the increased size of compiled methods) make the greatest
contribution to the speedup (with a median of 45% and a mean of

Geom.
mean

UI3

UI1

Typeinf

Mango

CecilInt

CecilComp

Richards

PrimMaker

DeltaBlue

0% 20% 40% 60% 80% 100%

dispatch tests

inlined tests

Figure 6. Number of type tests relative to SELF-93-nofeedback
(upper bars: SELF-93-nofeedback, lower bars: SELF-93)

38%) but also show the largest variation. For one benchmark, the
contribution is actually negative, i.e., slows down execution. Some
of the possible reasons for the slowdown are inferior register allo-
cation (because of increased register pressure), or higher instruc-
tion cache misses. (All of the above measurements include cache
effects.)
To summarize, the measurements in Figure 7 show that the perfor-
mance improvement obtained by using type feedback is by no
means dominated by the decreased call overhead. In most bench-
marks, factors other than call overhead dominate the savings in
execution time. Inlining based on type feedback is an enabling
optimization that allows other optimizations to work better, thus
creating indirect performance benefits in addition to the direct
benefits obtained by eliminating calls.

4.6 Code growth
Exponential code growth is a well-known potential problem of
procedure inlining. However, the additional inlining performed by
SELF-93 does not increase code size much over the systems not
using type feedback (Figure 8). On average, compiled code is only

25% larger in SELF-93 than in SELF-91; comparing SELF-93-
nofeedback to SELF-91 shows that part of the code size increase
may be caused by the inferior SELF-93 back end. For some
programs, the resulting code actually becomes smaller. This
behavior suggests that previous SELF systems could not inline
many attractive inlining candidates (i.e., very small methods), so
that type feedback can reduce the call frequency by a factor of 3.6
with a code growth of only 15-25%.

4.7 Performance relative to other systems
To provide some context about SELF’s performance, we measured
versions of the DeltaBlue and Richards benchmarks written in C++
and Smalltalk, as well as a Lisp version of Richards. (See Table 1
for details about the C++ and Smalltalk systems, and Table A-5 in
the Appendix for detailed performance data; none of the other
benchmarks are available in other languages.) Since it was not
possible to run Smalltalk or Lisp with the simulator, we could only
measure SPARCstation-2 CPU times. Simulated times of SELF
programs usually are between 5 and 25% lower than measured

Figure 7. Reasons for SELF-93’s improved performance

•
•
•

•

other

closures

typetest
overhead

call
overhead

-20% 0% 20% 40% 60% 80%
fraction of total speedup achieved

Figure 8. Size of compiled code relative to SELF-91

SELF-93

SELF-93
nofeedback

SELF-91

0% 20% 40% 60% 80% 100% 120% 140%

optimized code

unoptimized code

7

execution times on a SPARCstation-2 since the simulation models
a better cache organization and does not include OS overhead.
Therefore, for comparison with SELF and C++, we reduced the
measured Smalltalk and Lisp execution times by a conservative
25%. Figure 10 shows the results.

For DeltaBlue and Richards, SELF-93 runs 2.2 and 3.3 times faster
than ParcPlace Smalltalk (generally regarded as the fastest
commercially available Smalltalk system) even though SELF’s
language model is purer and thus harder to implement efficiently
[Cha92]. For Richards, SELF-93 runs 2.6 times faster than an
equivalent CommonLisp program compiled with maximum opti-
mization and minimum safety (i.e., the Lisp code would not detect
some runtime errors). In conclusion, for these two programs SELF-
93 runs two to three times faster than languages with roughly
comparable semantics.
Comparing SELF and C++ is harder since the two languages have
very different language models. SELF provides code reuse and
safety by basing the language on extensible control structures,
pointer safety, bounds and overflow checking, generic and exten-
sible arithmetic, and pure message passing. On the other hand,
C++ omits these features (with the exception of virtual functions)
in its quest for high performance. Consequently, the C++
programmer has a choice of programming style: either she uses
virtual functions liberally to get more flexibility, reusability, and
maintainability, or she minimizes virtual function usage to get
maximum performance.
We have measured both extremes in order to compare SELF-93’s
performance against C++. If the two C++ programs are hand-opti-
mized to make minimal usage of virtual calls, C++ is 2.3 times
faster than SELF-93. If all C++ functions are declared “virtual,”
however, C++ is only 10% to 40% faster than SELF-93 despite
SELF’s clearly inferior back end.
We have also measured the size of compiled code relative to C++.
This comparison should be taken cum grano salis since our
measurements are somewhat imprecise. First, the SELF numbers
include some code in the measurement loop calling the actual
benchmarks; since the two benchmarks are fairly small (10-
40 Kbytes), this code may inflate the numbers for SELF. Second,
all numbers include only the actual code generated by the
compilers and exclude any library code needed by the programs
(for both C++ programs the library code is an order of magnitude
larger than the actual compiled code). Third, as we have mentioned
above, SELF’s execution semantics are very different from C++’s,
and additional code is sometimes needed to preserve them (e.g.,
overflow checks).

Richards

DeltaBlue

0% 50% 100% 150% 200% 250%

C++

C++ (all virtuals)

Self-93

Smalltalk-80

Lisp

Figure 9. Execution speed (SELF-93 = 100%)

faster

Figure 9 shows that for Richards and DeltaBlue, the additional
inlining performed by SELF-93 actually decreases code size rela-
tive to SELF-91 (see Table A-6 in the appendix for absolute data).
But compared to GNU C++ the code is larger, especially for
DeltaBlue where several methods defined for constraints are
customized to the three constraint types. In this particular case, the
compiler actually overcustomizes—not all of the customization is
necessary to get good performance. Thus, the code increase is not a
result of type feedback but of overcustomization (type feedback
actually decreases DeltaBlue’s code size).† Fortunately, our experi-
ence with larger applications suggests that DeltaBlue is a patholog-
ical case rather than the norm.

5. Applicability to other systems
As demonstrated by the above measurements, type feedback works
very well for SELF. How well would it work with more conven-
tional implementation techniques (i.e., static compilation), and
how does it apply to other languages?

5.1 Type feedback and static compilation
Type feedback is in no way dependent on the “exotic” implementa-
tion techniques used in SELF-93 (e.g., dynamic compilation or
dynamic recompilation). If anything, these techniques make it
harder to optimize programs: using dynamic compilation in an
interactive system places high demands on compile speed and
space efficiency. For these reasons, the SELF-93 implementation of
type feedback has to cope with incomplete information (i.e., partial
type profiles and inexact invocation counts) and must refrain from
performing some optimizations to achieve good compilation
speed.

Thus, we believe that type feedback is probably easier to add to a
conventional batch-style compilation system. In such a system,
optimization would proceed in three phases (Figure 11). First, the
executable is instrumented to record receiver types, for example
with a gprof-like profiler [GKM83]. (The standard gprof

† With type feedback, it would be possible to customize less aggressively
(thus reducing code size) since customization is no longer needed to enable
inlining (i.e., with type feedback the main benefit of customization is that it
can reduce the number of type tests required).

DeltaBlue

Richards

0% 100% 200% 300% 400% 500% 600%

Self-91

Self-93

C++

Lisp

Figure 10. Code size relative to GNU C++

bigger

instrumented
program

source
program

optimized
program

Figure 11. Type feedback in a statically compiled system

compiler

compiler

type feedback data

8

profiler already collects almost all information needed by type
feedback, except that its data is caller-specific rather than call-site
specific, i.e., it does not separate two calls of foo if both come
from the same function.) Then, the application is run with one or
more test inputs that are representative of the expected inputs for
production use. Finally, the collected type and profiling informa-
tion is fed back to the compiler to produce the final optimized
code.
As mentioned above, static compilation has the advantage that the
compiler has complete information (i.e., a complete call graph and
type profile) since optimization starts after a complete program
execution. In contrast, a dynamic recompilation system has to
make decisions based on incomplete information. For example, it
cannot afford to keep a complete call graph, and the first recompi-
lations may be necessary while the program is still in the initializa-
tion phases so that the type profile is not yet representative. On the
other hand, a dynamic recompilation system has a significant
advantage because it can dynamically adapt to changes in the
program’s behavior.

5.2 Applicability to other languages
Obviously, type feedback could be used for other object-oriented
languages (e.g., Smalltalk or C++), or for languages with generic
operators that could be optimized with the type feedback informa-
tion (e.g., APL or Lisp). But how effective would it be? We cannot
give a definitive answer since would require measurements of
actual implementations, which are not available. Instead, we
discuss the applicability of type feedback using Smalltalk and C++
as examples.
Type feedback is directly applicable to Smalltalk, and we expect
the resulting speedups to be similar to those achieved for SELF.
Despite some language differences (e.g. prototype- vs. class-based
inheritance), the two languages have very similar execution char-
acteristics (e.g., a high frequency of message sends, intensive heap
allocation, use of closures to implement user-defined control struc-
tures, etc.) and thus very similar sources of inefficiency.
C++’s execution behavior (and language philosophy) is much
further away from SELF, but we believe it will nevertheless benefit
from type feedback. First, measurements of large C++ programs
[CGZ94] have shown that calls are almost five times more frequent
in C++ programs than in C programs, and that the average size of a
C++ virtual function is only 30 instructions, six times smaller than
the average C function. Second, the two C++ programs we
measured in section 4.7 slowed down by factors of 1.7 and 2.2
when using virtual functions everywhere, demonstrating that
current C++ compilers do not optimize such calls well. Third, we
expect that C++ programmers will make even more use of virtual
functions in the future as they become more familiar with object-
oriented programming styles; for example, recent versions of the
Interviews framework [LVC89] use virtual functions more
frequently than previous versions.
To give a concrete example, the DOC document editor measured in
[CGZ94] performs a virtual call every 75 instructions; given that a
C++ virtual call uses about 5 instructions and usually incurs two
load stalls and a stall for the indirect function call, we estimate that
this program spends roughly 10% of its time dispatching virtual
functions. If type feedback could eliminate a large fraction of these
calls, and if the indirect benefits of inlining in C++ are similar to
those measured for SELF (i.e., total savings are 4-6 times higher
than the call overhead alone, see Figure 7), substantial speedups
appear possible.
For type feedback to work well, the dynamic number of receiver
types per call site should be close to one, i.e., one or two receiver
types should dominate. A large fraction of call sites in C++ have
this property [CG94][G+94], and it also holds in other object-

oriented programming languages (e.g., Smalltalk, SELF, Sather,
and Eiffel); this is the reason that inline caching [DS84], [HCU91]
works well in these languages as an implementation of dynamic
dispatch. Therefore, we expect type feedback to work well for
these languages; the higher the frequency of dynamically-
dispatched calls, the more beneficial type feedback could be.

6. Related work
Previous systems have used static type prediction to inline opera-
tions that depend on the runtime type of their operands. For
example, Lisp systems usually inline the integer case of generic
arithmetic and handle all other type combinations with a call to a
routine in the runtime system. The Deutsch-Schiffman Smalltalk
compiler was the first object-oriented system to predict integer
receivers for common message names such as “+” [DS84].
However, none of these systems predicted types adaptively as does
SELF-93.
Other systems have used some form of runtime type information
for optimization, although not to the same extent as SELF-93 and
not in combination with recompilation. For example, Mitchell’s
system [Mit70] specialized arithmetic operations to the runtime
types of the operands (similar to SELF-89’s customization
[CUL89]). Similarly, several APL compilers created specialized
code for certain expressions (e.g. [Joh79], [Dyk77], [GW78]). Of
these systems, the HP APL compiler [Dyk77] came closest to
customization and type feedback. The system compiled code on a
statement-by-statement basis. In addition to performing APL-
specific optimizations, compiled code was specialized according to
the specific operand types (number of dimensions, size of each
dimension, element type, etc.). This so-called “hard” code could
execute much more efficiently than more general versions since
the cost of an APL operator varies wildly depending on the actual
argument types. If the code was invoked with incompatible types,
a new version with less restrictive assumptions was generated (so-
called “soft” code). Since the system never used type information
to reoptimize code, the technique is more akin to customization
than to type feedback.
Customization can be viewed as a restricted version of type feed-
back that attempts to minimize type tests by placing the receiver
type test at the beginning of the method. Unlike type feedback,
customization benefits only a restricted set of sends (namely those
involving self). As implemented in SELF, customization is also
more eager (i.e., all methods are always customized right away)
and more static (all programs are treated the same way). In
contrast, type feedback in SELF-93 is more lazy and adaptive.
The system described in this paper was inspired by the experi-
mental proof-of-concept system described in [HCU91]. That
system was the first one to use type feedback (then called “PIC-
based inlining”) for optimization purposes. However, being an
experimental system, its structure and performance was very
different. It did not use dynamic recompilation; methods had to be
recompiled “by hand,” and the system lacked any mechanism
determining “good” recompilation candidates (i.e., it never looked
at the callers). As a result, its speedup over a system without type
feedback was modest (about 11%). Based on measurements of
C++ programs, Calder and Grunwald [CG94] argue that type feed-
back would be beneficial for C++; their proposed “if conversion”
appears to be identical to inline caching [DS84] and PIC-based
inlining [HCU91], except that it is performed statically.
The Apple Object Pascal linker [App88] turned dynamically-
dispatched calls into statically-bound calls if a type had exactly
one implementation (e.g., the system contained only a Carte-
sianPoint class and no PolarPoint class). The disadvantage
of such a system is that it still leaves the procedure call overhead

9

even for very simple callees, does not optimize polymorphic calls,
and precludes extensibility through dynamic linking. (Srivastava
and Wall [SW92] perform more extensive link-time optimization
but do not optimize calls.)
Some type inference systems (e.g., [APS93], [PR94]) can deter-
mine the concrete receiver types of message sends. Compared to
type feedback, a type inferencer may provide more precise infor-
mation since it may be able to prove that only a single receiver
type is possible at a given call site. However, its information may
also be less precise since it may include types that could occur in
theory but never happen in practice. (In other words, the informa-
tion lacks frequency data.) Like link-time optimizations, the main
problem with type inference is that it requires knowledge of the
entire program, thus precluding dynamic linking.
Studies of inlining for more conventional languages like C or
Fortran have found that it often does not significantly increase
execution speed but tends to significantly increase code size (e.g.,
[DH88], [HwC89], [CHT91], [CM+92], [Hall91]). In contrast,
inlining in SELF results in both significant speedups and only very
moderate code growth. The main reason for this striking difference
is that SELF methods are much smaller on average than C or
Fortran procedures, so that inlining can actually reduce code size.
(Because of dynamic dispatch, calls in object-oriented languages
take up more instructions than conventional procedure calls.)
Furthermore, the additional inlining provided by type feedback
enables some optimizations to be more effective, reducing code
size as well. Finally, inlining is more important for object-oriented
languages because calls are more frequent. While this is particu-
larly true for pure object-oriented languages, it is also true for
hybrid languages like C++, as we have observed in section 5.2.

7. Conclusions
By using type information collected during previous execution of
calls (type feedback), an optimizing compiler can replace dynami-
cally-dispatched calls with faster inline-substituted code sequences
guarded by type tests for the common case(s). The process of
collecting type information and the inlining transformations based
on that information are both straightforward and do not pose
significant implementation difficulties. We believe that type feed-
back is applicable to both statically-typed and dynamically-typed
object-oriented languages (e.g., CLOS, C++, Smalltalk) and to
languages with type-dependent generic operators (e.g., APL and
Lisp).
We have implemented a compilation system for SELF that dynami-
cally recompiles often-used code and uses type feedback to
generate better code. The system uses simple heuristics to decide
which methods to recompile, how much to rely on type feedback,
and how much to optimize. The resulting implementation is stable
enough to be used by other researchers as part of their daily work.
With type feedback, a suite of large SELF applications runs 1.7
times faster than without type feedback, and performs 3.6 times
fewer calls. On the two medium-sized programs also available in
Smalltalk, our new system outperforms a commercial Smalltalk
implementation by factors of 2.2 and 3.3, respectively.
We believe that type feedback is an attractive optimization for situ-
ations where the exact (implementation-level) type of the argu-
ments to a relatively costly operation is unknown at compile time,
and where knowing the types would allow the compiler to generate
more efficient code. With the advent of object-oriented languages
and their use of late-bound operations, such optimizations are
likely to become more important even for statically-typed
languages.

Acknowledgments: We are very grateful to Bob Cmelik for
making it possible to run SELF under Shade, to Mark D. Hill for
Dinero, and to Gordon Irlam for Spanner. Many thanks also to all
the people who have commented on earlier versions of this paper:
Lars Bak, Roger Hayes, Peter Kessler, Brian Lewis, John Maloney,
and Mario Wolczko, and the anonymous referees of PLDI ‘94 who
provided valuable suggestions for improvements.

References
[APS93] Ole Agesen, Jens Palsberg, and Michael I. Schwartz-

bach. Type Inference of SELF: Analysis of Objects with
Dynamic and Multiple Inheritance. In ECOOP '93
Conference Proceedings, p. 247-267. Kaiserslautern,
Germany, July 1993.

[App88] Apple Computer, Inc. Object Pascal User’s Manual.
Cupertino, 1988.

[CGZ94] Brad Calder, Dirk Grunwald, and Benjamin Zorn.
Quantifying Behavioral Differences Between C and
C++ Programs. Technical Report CU-CS-698-94,
University of Colorado, Boulder, January 1994.

[CG94] Brad Calder and Dirk Grunwald. Reducing Indirect
Function Call Overhead in C++ Programs. In 21st
Annual ACM Symposium on Principles of Programming
Languages, p. 397-408, January 1994.

[Cha92] Craig Chambers, The Design and Implementation of the
SELF Compiler, an Optimizing Compiler for Object-
Oriented Programming Languages. Ph.D. Thesis, Stan-
ford University, April 1992

[Cha93] Craig Chambers. The Cecil Language - Specification
and Rationale. Technical Report CSE-TR-93-03-05,
University of Washington, 1993.

[CUL89] Craig Chambers, David Ungar, and Elgin Lee. An Effi-
cient Implementation of SELF, a Dynamically-Typed
Object-Oriented Language Based on Prototypes. In
OOPSLA ‘89 Conference Proceedings, p. 49-70, New
Orleans, LA, October 1989. Published as SIGPLAN
Notices 24(10), October 1989.

[CU90] Craig Chambers and David Ungar. Iterative Type Anal-
ysis and Extended Message Splitting: Optimizing
Dynamically-Typed Object-Oriented Programs. In
Proceedings of the SIGPLAN ‘90 Conference on
Programming Language Design and Implementation,
p. 150-164, White Plains, NY, June 1990. Published as
SIGPLAN Notices 25(6), June 1990.

[CU93] Bay-Wei Chang and David Ungar. Animation: From
cartoons to the user interface. User Interface Software
and Technology Conference Proceedings, Atlanta, GA,
November 1993.

[CM+92] Pohua P. Chang, Scott A. Mahlke, William Y. Chen, and
Wen-Mei W. Hwu. Profile-guided automatic inline
expansion for C programs. Software—Practice and
Experience 22 (5): 349-369, May 1992.

[CK93] Robert F. Cmelik and David Keppel. Shade: A Fast
Instruction-Set Simulator for Execution Profiling. Tech-
nical Report SMLI TR-93-12, Sun Microsystems Labo-
ratories, 1993. Also published as Technical Report CSE-
TR-93-06-06, University of Washington, 1993.

10

[HwC89] W. W. Hwu and P. P. Chang. Inline function expansion
for compiling C programs. In Proceedings of the
SIGPLAN ‘89 Conference on Programming Language
Design and Implementation, p. 246-57, Portland, OR,
June 1989. Published as SIGPLAN Notices 24(7), July
1989.

[Irl91] Gordon Irlam. SPA—SPARC analyzer tool set. Avail-
able via ftp from cs.adelaide.edu.au, 1991.

[Joh79] Ronald L. Johnston. The Dynamic Incremental
Compiler of APL\3000. In Proceedings of the APL ‘79
Conference. Published as APL Quote Quad 9(4), p. 82-
87, 1979.

[KLS92] Philip Koopman, Peter Lee, and Daniel Siewiorek.
Cache behavior of combinator graph reduction. ACM
Transactions on Programming Languages and Systems
14 (2):265-297, April 1992.

[LVC89] Mark Linton, John Vlissides, and Paul Calder.
Composing User Interfaces with Interviews. IEEE
Computer 22(2):8-22, February 1989.

[Mit70] J. G. Mitchell, Design and Construction of Flexible and
Efficient Interactive Programming Systems. Ph.D.
Thesis, Carnegie-Mellon University, 1970.

[PR94] Hemant D. Pande and Barbara G. Ryder. Static Type
Determination for C++. Technical Report LCSR-TR-
197a, Rutgers University, 1994.

[Rei93] Mark Reinhold. Cache Performance of Garbage-
Collected Programming Languages. Technical Report
MIT/LCS/TR-581 (Ph.D. Thesis), Massachusetts Insti-
tute of Technology, September 1993.

[SM+93] Michael Sannella, John Maloney, Bjorn Freeman-
Benson, and Alan Borning. Multi-way versus One-way
Constraints in User Interfaces: Experience with the
DeltaBlue Algorithm. Software—Practice and Experi-
ence 23 (5): 529-566, May 1993.

[SW92] Amitabh Srivastava and David Wall. A Practical System
for Intermodule Code Optimization at Link- Time. DEC
WRL Research Report 92/6, December 1992.

[US87] David Ungar and Randall B. Smith. SELF: The Power of
Simplicity. In OOPSLA ’87 Conference Proceedings,
p. 227-241, Orlando, FL, October 1987. Published as
SIGPLAN Notices 22(12), December 1987. Also
published in Lisp and Symbolic Computation 4(3),
Kluwer Academic Publishers, June 1991.

[Wall91] David Wall. Predicting Program Behavior Using Real or
Estimated Profiles. In Proceedings of the SIGPLAN ‘91
Conference on Programming Language Design and
Implementation, p. 59-70, Toronto, Canada, June 1991.
Published as SIGPLAN Notices 26(6), June 1991.

[CHT91] K. D. Cooper, M. W. Hall, and L. Torczon. An experi-
ment with inline substitution. Software—Practice and
Experience 21 (6): 581-601, June 1991.

[DH88] Jack W. Davidson and Anne M. Holler. A study of a C
function inliner. Software—Practice and Experience
18(8): 775-90, August 1988.

[DS84] L. Peter Deutsch and Alan Schiffman. Efficient Imple-
mentation of the Smalltalk-80 System. Proceedings of
the 11th Symposium on the Principles of Programming
Languages, Salt Lake City, UT, 1984.

[DTM94] Amer Diwan, David Tarditi, and Eliot Moss. Memory
Subsystem Performance of Programs with Intensive
Heap Allocation. In 21st Annual ACM Symposium on
Principles of Programming Languages, p. 1-14, January
1994.

[Dri93] Karel Driesen. Selector Table Indexing and Sparse
Arrays. OOPSLA ‘93 Conference Proceedings, p. 259-
270, Washington, D.C., 1993. Published as SIGPLAN
Notices 28(10), September 1993.

[Dyk77] Eric J. Van Dyke. A dynamic incremental compiler for
an interpretative language. HP Journal, p. 17-24, July
1977.

[G+94] Charles D. Garrett, Jeffrey Dean, David Grove, and
Craig Chambers. Measurement and Application of
Dynamic Receiver Class Distributions. Technical
Report CSE-TR-94-03-05, University of Washington,
February 1994.

[GKM83] S. L. Graham, P. B. Kessler, and M. K. McKusick. An
Execution Profiler for Modular Programs. Software—
Practice and Experience 13:671-685, 1983.

[GW78] Leo J. Guibas and Douglas K. Wyatt. Compilation and
Delayed Evaluation in APL. In Fifth Annual ACM
Symposium on Principles of Programming Languages,
p. 1-8, 1978.

[Hall91] Mary Wolcott Hall. Managing Interprocedural Optimi-
zation. Technical Report COMP TR91-157 (Ph.D.
Thesis), Computer Science Department, Rice Univer-
sity, April 1991.

[Hill87] Mark D. Hill. Aspects of Cache Memory and Instruction
Buffer Performance. Technical Report UCB/CSD 87/
381, Computer Science Division, University of Cali-
fornia, Berkeley, November 1987.

[HCU91] Urs Hölzle, Craig Chambers, and David Ungar. Opti-
mizing Dynamically-Typed Object-Oriented Languages
with Polymorphic Inline Caches. In ECOOP’91 Confer-
ence Proceedings, Geneva, 1991. Published as Springer
Verlag Lecture Notes in Computer Science 512,
Springer Verlag, Berlin, 1991.

[HCU92] Urs Hölzle, Craig Chambers, and David Ungar. Debug-
ging Optimized Code With Dynamic Deoptimization. In
Proceedings of the SIGPLAN ‘92 Conference on
Programming Language Design and Implementation,
p. 21-38, San Francisco, 1992. Published as SIGPLAN
Notices 27(6), June 1992.

[Höl94] Urs Hölzle. Adaptive Optimization for SELF: Recon-
ciling High Performance with Exploratory Program-
ming. Ph.D. Thesis, Stanford University, Computer
Science Department, 1994. (In preparation.)

11

a elapsed time (see text)

Benchmark unoptimized SELF-91 SELF-93 SELF-93
nofeedback

CecilComp 3,542,858 N/A 120,418 472,422

CecilInt 1,254,244 262,424 48,383 274,166

DeltaBlue 2,030,319 407,283 202,241 413,024

Mango 3,290,836 642,545 204,048 681,070

PrimMaker 3,934,308 819,277 76,273 602,217

Richards 6,962,721 839,478 151,819 888,817

Typeinf 2,363,131 288,982 101,858 293,815

UI1 1,727,021 256,573 213,145 288,176

UI3 1,274,863 274,262 101,884 301,344

Table A-4: Number of dynamically-dispatched calls

System
execution time (ms)

Richards DeltaBlue

SELF-93 591 210

Smalltalk 2,580a 600a

C++ (all virtuals) 546 149

C++ (min. virtuals) 249 87

Lisp 2,010a N/A

Table A-5: Performance of other systems

System
code size (103 bytes)

Richards DeltaBlue

SELF-93 11.3 39.9

Smalltalk N/A N/A

C++ (all virtuals) 7.6 13.5

C++ (min. virtuals) 7.1 9.3

Lisp 14.7 N/A

Table A-6: Size of compiled code

Appendix: Detailed Data

The execution times of the above benchmarks were kept relatively
short to allow easy simulation. To make sure that the small inputs
do not distort the performance figures, we measured three of the
benchmarks with larger inputs. Table A-3 shows that the speedups
achieved by type feedback are very similar to the speedups with
smaller inputs.

a Lines of code (excluding blank lines and comments).
b Time for both UI1 and UI3 excludes the time spent in graphics

primitives

a computed from the data in Table A-2

Benchmark Sizea Description

sm
al

l b
en

ch
m

ar
ks DeltaBlue 500 two-way constraint solver [SM+93] developed at the

University of Washington

PrimMaker 1100 program generating “glue” stubs for external primi-
tives callable from SELF

Richards 400 simple operating system simulator originally written
in BCPL by Martin Richards

la
rg

e
be

nc
hm

ar
ks

CecilComp 11,500 Cecil-to-C compiler compiling the Fibonacci func-
tion (the compiler shares about 80% of its code with
the interpreter, CecilInt)

CecilInt 9,000 interpreter for the Cecil language [Cha93] running a
short Cecil test program

Mango 7,000 automatically generated lexer/parser for ANSI C,
parsing a 700-line C file

Typeinf 8,600 type inferencer for SELF [APS93]

UI1 15,200 prototype user interface using animation techniques
[CU93]b

UI3 4,000 experimental 3D user interfaceb

Table A-1: Benchmark programs

Benchmark

execution time (ms)

SELF-93
nofeedback SELF-93 SELF-91

CecilComp 1,348 953 1,144

CecilInt 2,035 1,085 2,026

DeltaBlue 744 210 687

Mango 2,423 1,526 2,292

PrimMaker 2,520 1,227 2,279

Richards 922 591 693

Typeinf 1,448 769 1,388

UI1 716 686 645

UI3 656 528 571

Table A-2: Execution times

Benchmark

execution time (seconds) speedup

SELF-93
nofeedback SELF-93 large

input
small
inputa

CecilComp-2 97.2 71.5 1.36 1.41

CecilInt-2 38.5 21.9 1.76 1.88

Mango-2 18.5 11.6 1.59 1.59

Table A-3: Performance of long-running benchmarks

