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Introduction 

The type structure of programming languages has been the subject of an 

active development characterized by continued controversy over basic 

principles. (I-7) In this paper, we formalize a view of these principles 

somewhat similar to that of J. H. Morris. (5) We introduce an extension of 

the typed lambda calculus which permits user-defined types and polymorphic 

functions, and show that the semantics of this language satisfies a 

representation theorem which embodies our notion of a "correct" type structure. 

We start with the belief that the meaning of a syntactically valid 

program in a "type-correct" language should never depend upon the particular 

representations used to implement its primitive types. For example, suppose 

that S and S' are two sets such that the members of S can be used to 

"represent" the members of S'. We can conceive of running the same program 

on two machines M and M' in which the same primitive type, say inteser, ranges 

over the sets S and S' respectively. Then if every"integer"input to M 

represents the corresponding input to M', and if M interprets every primitive 

operation involving integers in a way which represents the interpretation 

of M', we expect that every integer output of M should represent the 

corresponding output of M'. Of course, this idea requires a precise definition 

of the notion of "represents"; we will supply such a definition after 

formalizing our illustrative language. 

The essential thesis of Reference 5 is that this property of representation 

independenceshould hold for user-defined types as well as primitive types. 

The introduction of a user-defined type t should partition a program into 
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an "outer" region in which t behaves like a primitive type and is manipulated 

by various primitive operations which are used but not defined, and an "inner" 

region in which the representation of t is defined in terms of other types, 

and the primitive operations on t are defined in terms of this representation° 

We expect that the meaning of such a program will remain unchanged if the inner 

region is altered by changing the representation of the type and redefining its 

primitive operations in a consistent manner. 

We also wish to consider the old but neglected problem of polymorphic 

functions, originally posed by Strachey. Consider the construction of a 

program in which several different types of arrays must be sorted. We can 

conceive of a "polymorphic sort function" which, for any type t, accepts an 

array with elements of type t and a binary ordering predicate whose arguments 

must be of type t, and produces an array with elements of type t. We would 

like to define such a function, and to have each call of the function 

syntactically checked to insure that it is type-correct for some t. But in a 

typed language a separate sort function must be defined for each 

type, while in a typeless language syntactic checking is lost. We suggest that 

a solution to this problem is to permit types themselves to be passed as a 

special kind of parameter, whose usage is restricted in a way which permits 

the syntactic checking of type correctness. 

An Illustrative Language 

To illustrate these ideas, we introduce an extension of the typed lambda 
(8) 

~calculus w~ich permits the binding of type variables. Although this language 

is hardly an adequate vehicle for programming, it seems to pose the essense of 

the type structure problem, and it is simple enough to permit a brief but 

rigorous exposition of its semantics. 

We begin with a typed lambda calculus in which the type of every expression 

can be deduced from the type of its free variables. For this purpose it is 

sufficient to supply, at each point of variable binding, a type expression 

describing the variable being bound. For example, 

~x C t. x 

denotes the identity function for objects of type t, and 
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%f s t ÷ t. Xx s t. f(f(x)) 

denotes the doubling functional for functions over t. 

It is evident that the meaning of such expressions depends upon both 

their free normal variables and their free type variables (e.g., t in the above 

examples). This suggests the addition of a facility for binding type variables 

to create functions from types to values, called polymorphic functions. For 

example, 

At. Xx s t. x 

is the polymorphic identity function, which maps t into the identity function 

for objects of type t, and 

At. If e t + t. %x e t. f(f(x)) 

is the polymorphic doubling functional, which maps t into the doubling functional 

for functions over t. 

The next step is to permit the application of polymorphic functions to type 

expressions, and to introduce a new form of beta-reduction for such applications. 

In general, if r is a normal expression and w is a type expression, then 

(At. r)[w] 

denotes the application of the polymorphic function At. r to the type w, and 

is reducible to the expression obtained from r by replacing every free occurrence 

of t by w (after possible alpha-conversion to avoid collision of variables). 

For example, the application of the polymorphic identity function to the type 

integer ÷ real, 

(At. Xx c t. x)[integer + real] 

reduces to the identity functional for functions from integer to real, 

Xx s integer ÷ real. x 

Finally, we must introduce a new kind of type expression to describe the 

types of polymorphic functions. We write At. w to denote the type of polymorphic 

function which, when applied to the type t, produces a value of type w. Thus 

if the expression r has the type w, then the expression At. r has the type At. w. 

For example, the type of the polymorphic identity function is At. t ÷ t, while 

the type of the polymorphic doubling functional is gt. (t ÷ t) + (t ÷ t). 
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In providing polymorphic functions, we also provide user-defined types. 

For example, suppose outer is an expression in which cmp is a primitive type 

(i.e., a free type variable) intended to denote complex numbers, add and magn 

are primitive functions (i.e., free normal variables) intended to denote 

addition and magnitude functions for complex numbers, and i is a primitive 

constant (i.e., a free normal variable) intended to denote the square root of -i. 

Suppose we wish to represent complex numbers by pairs of reals, and to represent 

addition, magnitude, and the square root of -i by the expressions. 

addrep ~ (real x real) x (real x real) ÷ (real x real) 

magnrep s (real x real) + real 

irep ~ (real × real) 

This representation can be specified by the expression 

(Acmp. %add s cmp x cmp + cmp. %magn s cmp * real. %i s cmp. outer) 

[real x real] (addrep) (magnrep) (irep) 

(Our illustrative language does not include the Cartesian product, but its 

addition should not pose any significant problems.) Admittedly, this is hard 

to read, but the problem should be amenable to judicious syntactic sugaring. 

We now proceed to develop a formal definition of our illustrative 

language, culminating in a "representation theorem" which asserts its type 

correctness. 

Notational Preliminaries 

For sets S and S', we write S x S' to denote the Cartesian product of S and 

S ,S S', S~S' or to denote the set of functions from S to S', and when S and S' 

are domains (in the sense of Scott) S + S' to denote the set of continuous 

functions from S to S'. If F is a function which maps each member of S into 

a set, we write H F(x) to denote the set of functions f such that the domain 
xcS 

of f is S and, for each x c S, f(x) ~ F(x). 

For f ~ S -~S', x g S, x' ~ S', we write [flxlx'] to denote the function 

%y g S. if y = x then x' else f(y). 
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Syntax 

To formalize the syntax of our language, we begin with two disjoint, 

countably infinite sets: the set T of type ~ariables and the set V of normal 

variables. Then W, the set of t_~ expressions,is the minimal set satisfying: 

(la) If t s T then: 

t~W. 

(ib) If Wl, w 2 ~ W then: 

(w I ÷ w 2) ~ W. 

(ic) If t a T and w ~ W then: 

(At. w) ~ W. 

(To keep the syntax simple, we have specified complete parenthesization, but 

in writing particular type expressions we will omit parentheses according to 

common usage.) 

From the fact that At. w is supposed to bind the occurrences of t in w, 

one can define the notions of free and bound occurrences of type variables, 

and of alpha-conversion of type expressions in an obvious manner. We write 

w = w' to indicate that w and w' are alpha-convertible. (In a more complex 

language, the relation = might be larger; the idea is that it must be a 

decidable equivalence relation which implies that w and w' have the same 

meaning.) 

One can also define the notion of substitution in an obvious manner. 

We write w I I~ 2 to denote the type expression obtained from w I by replacing every 

free occurrence of t by w2, after alpha-convering w I so that no type variable 

occurs both bound in w I and free in w 2. 

To define normal expressions, we must capture the idea that every normal 

expression has an explicit type. Specifically, an assignment of a type 

expression to every normal variable which occurs free in a normal expression r 

must induce an assignment of a type expression to r itself which is unique 

(to within alpha-conversion). For all Q e V ~W and w ~ W we write RQw to 

denote the set of normal expressions for which the assignment of Q(x) to each 

normal variable x will induce the assignment of w to the normal expression itself. 
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Then RQw is the minimal family of sets satisfying: 

(2a) If Q ~ V~W and x E V then: 

x s RQQ(x ) 

, , RQw ~ (2b) If Q ~ V~W, Wl, Wl, w 2 ~ W, w I = w I, r I e RQ(wl÷w2 ), and r 2 s ~ then: 

(r I r 2) s RQw 2 

(2c) If Q ~ V~W, w I, w 2 s W, x s V, and r s R[QiXlWl] w2 then: 

(%x c w I. r) s RQ(wl~W2 ) 

(2d) If Q ~ V ~W, wl, w 2 c W, t E T, and r e RQ(At.Wl) then: 

(r[w2]) e R 
Q(Wll~ 2) 

(2e) If Q s V ~W, w ~ W, t e T, r e RQw, and t does not occur free 

in Q(x) for any x which occurs free in r, then: 

(At. r) s RQ(&t.w ) 

(Again we have specified complete parenthesization, but will omit parentheses 

according to common usage.) By structural induction on r, it is easy to show 

that r ~ RQw and r c RQ implies w = w' 
W v 

The restriction on t in (2e) reflects the fact that the meaning of t in 

At. r is distinct from its meaning in the surrounding context. For example, 

Q(x) = t does not imply At.x ~ RQ(At.t ). 
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Semantics 

We will interpret our language in terms of the lattice-theoretic approach 

of D. Scott~9-12~ntuitively the effect of a type expression is to produce a 

Scott domain given an assignment of a domain to each free type variable occurring 

in the type expression. Thus we expect the meaning of type expressions to be 

given by a function 

B s W==~J0T~Jo 

where~denotes the class of all domains. 

To specify B we consider each of the cases-in the syntactic definition of W: 

(la) Obviously, 

B[t](D) = D(t) 

(We will use barred variables to denote functions of T, and square 

brackets to denote application to syntactic arguments.) 

(ib) We intend w I ÷ w 2 to denote the domain of continuous functions 

from the domain denoted by w I to the domain denoted by w 2. Thus 

B[w I ~ w2](D) = arrow(B[Wl](D), B[w2](D)) 

where arrow e (~xJO)~O satisfies 

arrow(D I, D 2) = D 1 ÷ D 2. 

(ic) We intend At. w to denote a set of functions over the class of 

domains which, when appl~ed to a domain D will produce some element 

of the domain denoted by w under the assignment of D to t. Thus 

B[At. w](~) = delta(%D ~. B[w][DItID]) 

where delta s (J~D)=7~)satisfies 

delta(e) ~ ~ e(D) 
DsJO 

We leave open the possibility that delta(e) may be a proper subset 

of the above expression. (Indeed, if we are going to avoid the 

paradoxes of set theory and consider delta(@) to be a domain, it had 

better be a very proper subset.) 

By structural induction, one can show that w = w' implies B[w] = B[w'], and 

that 

B[w I I~2](~) = B[Wl][~ I t i B[w2](~)] 
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The effect of a normal expression is to produce a value, given an 

assignment of domains to its free type variables and an assignment of values 

to its free normal variables.(We will call the latter assignment an environment.) 

However, this effect must conform to the type structure. When given a type 

assignment D, a normal expression r s RQw must only accept environments which 

map each variable x into a member of the domain B[Q(x)](D), and r must produce 

a member of the domain B[w](D). Thus we expect that, for all Q c V~W and 

w ~ W, the meaning of the normal expressions in RQw will be given by a function 

MQw e R~ ==k H m(Env~(D) + B[w](D)) 

where 

EnVQ(D) = ~ B[Q(x)](D) . 
xgV 

To specify the MQw we consider each of the cases in the syntactic 

definition of RQw. Essentially the specification is an immediate consequence 

of the intuitive meaning of the language, guided by the necessity of making the 

functionalities come out right: 

(2a) MQQ(x)[X](D)(e) = e(x) 

(2b) MQw2[r I r2] (D) (e) = (MQ(wl_>W2) [r I] (D) (e)) (MQwi[r2] (D) (e)) 

(2c) MQ(wl+w2) [Xx c w I. r] (D) (e) 

= Xac B[Wl](D). M[QiXlWl]W2[r](~)[elxla ] 

(2d) M = Q(Wl i~2) [r [w2 ] ] (~) (e) (MQ(~t.Wl) [r ] (D) (e)) (B [w2 ](~)) 

(2e) MQ(At.w)[At. r](D)(e) = XD ~. MQw[r][DItlD](e) 
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Representations 

Before we can formulate the representation theorem, we must specify what 

we mean by representation. 

For D, D' e 4/), the set of representations between D and D', written 

rep(D, D'), is the set of continuous function pairs 

rep(D, D') = { <~, 9> I @ ~ D ÷ D', 4 ~ D' ÷ D, 4"~ ~ I D, @'4 ~ I D, } 

where I D denotes the identity function on D. For x E D, x' £ D', and 

p = <~, 4> e rep(D, D'), we write 

p: X ~ X ~ 

and say that x represents x' according to p if and only if 

x ~ ~ ( x ' )  

or equivalently, 

¢(x) ~ x' 

A pragmatic justification of this rather ad hoc definition is that it will 

ultimately make the representation theorem correct. (Although this would still 

be true if we took rep(D, D') to be the set of projection pairs between D and D', 

i.e., if we replaced the requirement ~.~ ~I D by 4"~ = I D .) However, some 

intuition is provided by the following connection with the notion of representation 

between sets. Conventionally, we might say that a representation between a set S 

and a set S' is simply a function ~ e S ~-2S ', and that x e S represents x' e S' 

according to ~ iff ~(x) = x'. But if we take D and D' to be the powerset domains 

2 S and 2 S' (with ~as~), and ~ and ~ to be the pointwise extensions of ~ and 

its converse (as a relation), then p = <~,4> is a representation between D and D', 

and p: sJ+ s' iff every x ~ s conventionally represents some x' e s' according 

to ~. 

The following is an obvious and useful extension of our definition. 

For D, D' g j~T, we define 

rap(D, D')= ~ rep(D(t), D'(t)) . 
teT 
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The Representation Theorem 

At this point, we can formulate a preliminary version of the representation 

theorem. Consider the set of normal expressions RQw,and suppose that D, D' E ~T 

and ~ ~ rep(D, D'), so that for each type variable t, p(t) is a representation 

between the domains D(t) and D'(t) o Moreover, suppose that e and e' are 

environments such that,for each normalvariable x, e(x) represents e'(x) 

according to the relevant representation, i.e., ~(Q(x)). Then we expect that 

the value of any r s RQw when evaluated with respect to D and e should 

represent the value of the same normal expression when evaluated with respect to 

D' and e', according to the relevant representation, i.e., ~(w). 

More formally: 

Let Q ~ V ---'FW, w ~ W, D, D' eJO~ 7 E rep(D, D'), e ~ ENVQ (D), 

and e' ~ EnVQ (D'). If 

(Vx ~ V) 7(Q(x)): e(x) ~+ e'(x) 

then 

(~r c RQw) 7(w): MQw[r] (D) (e) ~ MQw[r](D')(e') 

However, this formulation has a serious flaw. In choosing ~, we assign 

a representation to every type variable, but not to every type expression~ 

so that the representations ~(Q(x)) and ~(w) are not fully defined. Moreover, 

we can hardly expect to assign an arbitary representation to every type expression. 

For example, once we have chosen a representation for integer and a representation 

for real, we would expect that this choice would determine a representation for 

integer + real and for any other type expression constructed from integer and real. 

In brief, we have underestimated the meaning of type expressions. Not only 

must B[w] map an assignment of domains to type variables into a domain, but it must 

also map an assignment of representations into a representation. If we can extend 

the meaning of B to do so, then a correct formulation of the representation 

theorem is: 

Let Q ~ V ~W, w ~ W, D, D' E~)T, 7 ~ rep(D, D'), e E EnvQ (D), 

and e' s EnVQ (D'). If 

(~x e V) B[Q(x)](~): e(x) ~+ e'(x) 

then 

(Vr ~ RQw ) B[w](p): MQw[r] (D) (e) ~+ MQw[r](D')(e') 
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The Full Semantics of Type Expressions 

In order to extend the semantic function B, we first note that the 

combination of domains and representations forms a category. We write C to 

denote the category, called the category of types, in which the set of objects 

is J~, the set of morphisms from D to D' is rep(D, D'), composition is given by 

<¢', ~'> • <0, 4 > = <¢"0, ~'~'> 

and the identity for D is 

~D = <ID' ID> 

From the category of types, we can form two further categories by standard 
!13  c T constructions of category theory e write to denote the category in which 

the set of objects is~ T, the set of morphisms from ~ to D' is rep(D, D'), 

composition is given by 

(p "p) (t) = 7' (t)"7(0 

and the identity for D is given by 

&g(t) =4g(t ) 

We write Funct(C, C) to denote the category in which the objects are the 

functors from C to C and the morphisms from 8 to O' are the natural transformations 

from 8 to 8', i.e., the functions n s ~ rep(e(D),8'(D)) such that, for all 
D~ 

D, D' e J0and p s rep(D, D'), 

8' (p)'N(D) = h(D') "@(p) 

Composition is given by 

(~''o)(n) = n'(D)'N(D) 

and the identity for e is given by 

~e (D) = ~e(D) 
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We have seen that the meaning B[w] of a type expression w must map the 

objects of C T into the objects of C and the morphisms of C T into the morphisms 

of C. Moreover, if our formulation of the representation theorem is to be 

meaningful, we must have 

7 e rep(D, D') implies B[w](~) e rep(B[w](D), B[w](D')) 

Thus, at least if we can satisfy the appropriate laws, we expect to extend 

B[w] from a function from'~ T to j~ into a functor from C T to C. 

Indeed, by pursuing the analogy of categories with sets and functors 

with functions, we can induce the main structure of the definition of B[w]. 

For each of the cases in the syntactic definition of W: 

(la) B[t](D) = D(t) 

B [t] (7) = ~(t) 

(ib) B[w I ÷ w2](D) = arrow(B[Wl](D), B[w2](D)) 

B[w I * w 2](7) = arrow(B[w I](7), B[w 2](7)) 

where arrow is a bifunctor from C x C into C. 

(ic) B[At. w] = delta • abstract 

where abstract is the functor from C T into Funct(C, C) such that 

abstract(D)(D) = B[w][~I~ID ] 

abstract(D)(p) = B[w][~Itlp ] 

abstract(7)(D) = B[w][71t]#D] 

and delta is a functor from Funct(C, C) into C. 

Even before defining the functors arrow and delta, it can be shown that 

B maps every type expression into a functor from C T into C, that w = w' implies 

B[w] = B[w'], and that 

B[WlI: 2](~) = B[Wl][ D I t I B[w2](D) ] 

B[WlI~2](7) = B[Wl][ ~ I t I B[w2](~) ] 
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The Functors arrow and delta 

The definition of the functor arrow is fairly obvious. Essentially, 

its action on representations is to produce the only reasonable composition 

which matches domains correctly. For all DI, D 2 el9, 

arrow(D I, D 2) = D I ÷ D 2 

For all <~i' 41> s rep(Dl' Di) and <~2' 42> E rep(D2, D~), 

arrow(<~l,41 >, <~2,42 >) = 

< ~f E DI÷D 2. ~2"f'41, ~f e D 1 D 2. 42"f'~i > 

(The action of arrow on representations is similar to the method used by 

Scott to construct retraction or projection pairs for function spaces.) 

The definition of arrow and the properties of representations give 

the following lepta: 

, ' ÷ D~ Pl ~ rep(Dl Di)' and P2 E rep(D 2, D~). Let f ~ D 1 + D 2 f' g D 1 

Then 

arrow(p I, P2 ): f,÷ f' 

if and only if, for all x ~ D 1 and x' s D i, 

PI: x'÷ x' implies P2: f(x),÷ f'(x') . 

which, with the definition of B~gives the following lemma: 

Let Wl, w 2 s W, ~ e rep(D, D'), f e B[w I ÷ w2](D) , and f' s B[w I + w2](D'). 

Then 

B[w I + w2](~): f,÷ f' 

if and only if, for all x ~ B[Wl](D) and x' e B[Wl](D'), 

B[Wl](~): xJ+ x' implies B[w2](~): f(x)i+ f'(x') 

(As an aside, we note that the definition of arrow establishes a connection 

between our notion of representation and the concept of simulation~14~ypically, 

one says that a function ~ s S =7S' is a simulation of a relation r ~ S × S by a 

relation r'E S' x S' iff ~'r C__r'.~ (where • denotes relational composition). 

But if f, f', ~, and 4 are the pointwise extensions of r, r', ~, and the converse 

of ~, then ~.r ~ r'.~ iff arrow(p, p): fl~ f', where p = <@, 4>.) 
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The definition of the functor delta is less obvious. For all functors 

e from C to C, delta(8) is the complete lattice with elements 

{ f I f s H 8(D) and (VD, D' c~)(Vp s rep(D,D'))8(p): f(D) ~ f(D') 
Ds~ 

with the partial ordering f ~ g iff (~D s~0) f(D) ~e(D) g(D). For all natural 

transformations q from e to e', 

delta(n) = 

< %f e delta(e). %D sD. [q(D)]i(f(D)) , 

kf e delta(e'). %D g~. [~(D)]2(f(D)) > 

At this point, we must admit a serious lacuna in our chain of argument. 

Although delta(e) is a complete lattice (with (-~F)(D) = US(D) {f(D) I f s F } ), 

it is not known to be a domain, i.e., the question of whether it is continuous 

and countably based has not been resolved. Nevertheless there is reasonable 

hope of evading the set-theoretic paradoxes. Even though n e(D) is immense 
DcJ~ 

(since JO is a class), the stringent restrictions on membership in delta(e) 

seem to make its size tractable. For example, if f s delta(0), then the value 

of f(D) determines its value for any domain isomorphic to D. 

The definition of delta and the properties of representations give 

the lemma: 

Let q be a natural transformation from 8 to e', f s delta(e) and 

f' g delta(e'). Then 

delta(q): f~+ f' 

if and only if, for all D, D' s J0, and p E rep(D, D'), 

n(D')'e(p): f(D) ,+ f'(D') 

which, with the definition of B, gives: 

Let t ~ T, w ~ W, ~ e rep(D, D'), f E B[At. w](D), and f' c B[At. w](D'). 

Then 

B[At. w](~): f~+ f' 

if and only if, for all D, Des J9, and p e rep(D, D'), 

B[w][~Itlp]: f(D),÷ f'(D') 

From the final lemmas obtained about arrow and delta, the representation 

theorem can be proved by structural induction on r. 
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Some Syntactic Manipulations 

We have explore d our illustrative language semantically rather than 

syntactically, i.e., we have provided it with a mathematical meaning instead 

of investigating the syntactic consequences of reducibility. However, an 

obvious question is raised by the fact that every expression in the typed 

lambda calculus, but not the untyped lambda calculus, has a normal form. (8) 

We have been unable to resolve this question for our language. 

Nevertheless, the language permits some interesting constructions which are 

not possible in the typed lambda calculus. 

For example, consider the following normal expressions: 

O n ~ At. If ~ t ÷ t. lx ~ t. ~----~f( ... f(x) ... ) 

n times 
of type ~ ~ At. (t ÷ t) + (t + t), 

e 5 %h s ~. At. %f e t ÷ t. lx s t. f(h[t] f x) 

of type ~ ÷ ~ (We assume application is left-associative.), 

~ lg s ~ ÷ ~. Xh ~ ~. g(h[~] g pl ) 

of type (~ ÷ ~) ~ (~ ÷ ~), and 

of type ~ ÷ (w + w). Then the following expressions are intereonvertible: 

8 Pn = Pn+l 

B Pm+l = ~ (B Pm ) 

B PO Pn = Pn+l 

Pm+l PO = B Pm Pl 

B Pm+l Pn+l ~ B Pm (B Pm+l Pn ) 

From the last three equations it follows that B Pm Pn = P~(n,m)' where ~(n,m) 

is Ackermann's function. 
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Further Remarks 

Since the writing of the preliminary version of this paper, considerable 

attention has been given to the "serious lacuna" mentioned above. We have 

managed to show that delta(e) is a continuous lattice, but not that it is 

countably based. Conceivably, our notion of representation is too restrictive, 

which would tend to make delta(8) unnecessarily large. 
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