

TOWARDS A THEORY OF TYPE STRUCTURE

John C. Reynolds

Syracuse University

Syracuse, New York 13210, U.S.A.

Introduction

The type structure of programming languages has been the subject of an

active development characterized by continued controversy over basic

principles. (I-7) In this paper, we formalize a view of these principles

somewhat similar to that of J. H. Morris. (5) We introduce an extension of

the typed lambda calculus which permits user-defined types and polymorphic

functions, and show that the semantics of this language satisfies a

representation theorem which embodies our notion of a "correct" type structure.

We start with the belief that the meaning of a syntactically valid

program in a "type-correct" language should never depend upon the particular

representations used to implement its primitive types. For example, suppose

that S and S' are two sets such that the members of S can be used to

"represent" the members of S'. We can conceive of running the same program

on two machines M and M' in which the same primitive type, say inteser, ranges

over the sets S and S' respectively. Then if every"integer"input to M

represents the corresponding input to M', and if M interprets every primitive

operation involving integers in a way which represents the interpretation

of M', we expect that every integer output of M should represent the

corresponding output of M'. Of course, this idea requires a precise definition

of the notion of "represents"; we will supply such a definition after

formalizing our illustrative language.

The essential thesis of Reference 5 is that this property of representation

independenceshould hold for user-defined types as well as primitive types.

The introduction of a user-defined type t should partition a program into

#Work supported by Rome Air Force Development Center Contract No.

30602~72-C-0281 , ARPA Contract No. DAHC04-72-C-0003 ~ and National

Science Foundation Grant GJ-41540.

409

an "outer" region in which t behaves like a primitive type and is manipulated

by various primitive operations which are used but not defined, and an "inner"

region in which the representation of t is defined in terms of other types,

and the primitive operations on t are defined in terms of this representation°

We expect that the meaning of such a program will remain unchanged if the inner

region is altered by changing the representation of the type and redefining its

primitive operations in a consistent manner.

We also wish to consider the old but neglected problem of polymorphic

functions, originally posed by Strachey. Consider the construction of a

program in which several different types of arrays must be sorted. We can

conceive of a "polymorphic sort function" which, for any type t, accepts an

array with elements of type t and a binary ordering predicate whose arguments

must be of type t, and produces an array with elements of type t. We would

like to define such a function, and to have each call of the function

syntactically checked to insure that it is type-correct for some t. But in a

typed language a separate sort function must be defined for each

type, while in a typeless language syntactic checking is lost. We suggest that

a solution to this problem is to permit types themselves to be passed as a

special kind of parameter, whose usage is restricted in a way which permits

the syntactic checking of type correctness.

An Illustrative Language

To illustrate these ideas, we introduce an extension of the typed lambda
(8)

~calculus w~ich permits the binding of type variables. Although this language

is hardly an adequate vehicle for programming, it seems to pose the essense of

the type structure problem, and it is simple enough to permit a brief but

rigorous exposition of its semantics.

We begin with a typed lambda calculus in which the type of every expression

can be deduced from the type of its free variables. For this purpose it is

sufficient to supply, at each point of variable binding, a type expression

describing the variable being bound. For example,

~x C t. x

denotes the identity function for objects of type t, and

410

%f s t ÷ t. Xx s t. f(f(x))

denotes the doubling functional for functions over t.

It is evident that the meaning of such expressions depends upon both

their free normal variables and their free type variables (e.g., t in the above

examples). This suggests the addition of a facility for binding type variables

to create functions from types to values, called polymorphic functions. For

example,

At. Xx s t. x

is the polymorphic identity function, which maps t into the identity function

for objects of type t, and

At. If e t + t. %x e t. f(f(x))

is the polymorphic doubling functional, which maps t into the doubling functional

for functions over t.

The next step is to permit the application of polymorphic functions to type

expressions, and to introduce a new form of beta-reduction for such applications.

In general, if r is a normal expression and w is a type expression, then

(At. r)[w]

denotes the application of the polymorphic function At. r to the type w, and

is reducible to the expression obtained from r by replacing every free occurrence

of t by w (after possible alpha-conversion to avoid collision of variables).

For example, the application of the polymorphic identity function to the type

integer ÷ real,

(At. Xx c t. x)[integer + real]

reduces to the identity functional for functions from integer to real,

Xx s integer ÷ real. x

Finally, we must introduce a new kind of type expression to describe the

types of polymorphic functions. We write At. w to denote the type of polymorphic

function which, when applied to the type t, produces a value of type w. Thus

if the expression r has the type w, then the expression At. r has the type At. w.

For example, the type of the polymorphic identity function is At. t ÷ t, while

the type of the polymorphic doubling functional is gt. (t ÷ t) + (t ÷ t).

411

In providing polymorphic functions, we also provide user-defined types.

For example, suppose outer is an expression in which cmp is a primitive type

(i.e., a free type variable) intended to denote complex numbers, add and magn

are primitive functions (i.e., free normal variables) intended to denote

addition and magnitude functions for complex numbers, and i is a primitive

constant (i.e., a free normal variable) intended to denote the square root of -i.

Suppose we wish to represent complex numbers by pairs of reals, and to represent

addition, magnitude, and the square root of -i by the expressions.

addrep ~ (real x real) x (real x real) ÷ (real x real)

magnrep s (real x real) + real

irep ~ (real × real)

This representation can be specified by the expression

(Acmp. %add s cmp x cmp + cmp. %magn s cmp * real. %i s cmp. outer)

[real x real] (addrep) (magnrep) (irep)

(Our illustrative language does not include the Cartesian product, but its

addition should not pose any significant problems.) Admittedly, this is hard

to read, but the problem should be amenable to judicious syntactic sugaring.

We now proceed to develop a formal definition of our illustrative

language, culminating in a "representation theorem" which asserts its type

correctness.

Notational Preliminaries

For sets S and S', we write S x S' to denote the Cartesian product of S and

S ,S S', S~S' or to denote the set of functions from S to S', and when S and S'

are domains (in the sense of Scott) S + S' to denote the set of continuous

functions from S to S'. If F is a function which maps each member of S into

a set, we write H F(x) to denote the set of functions f such that the domain
xcS

of f is S and, for each x c S, f(x) ~ F(x).

For f ~ S -~S', x g S, x' ~ S', we write [flxlx'] to denote the function

%y g S. if y = x then x' else f(y).

412

Syntax

To formalize the syntax of our language, we begin with two disjoint,

countably infinite sets: the set T of type ~ariables and the set V of normal

variables. Then W, the set of t_~ expressions,is the minimal set satisfying:

(la) If t s T then:

t~W.

(ib) If Wl, w 2 ~ W then:

(w I ÷ w 2) ~ W.

(ic) If t a T and w ~ W then:

(At. w) ~ W.

(To keep the syntax simple, we have specified complete parenthesization, but

in writing particular type expressions we will omit parentheses according to

common usage.)

From the fact that At. w is supposed to bind the occurrences of t in w,

one can define the notions of free and bound occurrences of type variables,

and of alpha-conversion of type expressions in an obvious manner. We write

w = w' to indicate that w and w' are alpha-convertible. (In a more complex

language, the relation = might be larger; the idea is that it must be a

decidable equivalence relation which implies that w and w' have the same

meaning.)

One can also define the notion of substitution in an obvious manner.

We write w I I~ 2 to denote the type expression obtained from w I by replacing every

free occurrence of t by w2, after alpha-convering w I so that no type variable

occurs both bound in w I and free in w 2.

To define normal expressions, we must capture the idea that every normal

expression has an explicit type. Specifically, an assignment of a type

expression to every normal variable which occurs free in a normal expression r

must induce an assignment of a type expression to r itself which is unique

(to within alpha-conversion). For all Q e V ~W and w ~ W we write RQw to

denote the set of normal expressions for which the assignment of Q(x) to each

normal variable x will induce the assignment of w to the normal expression itself.

413

Then RQw is the minimal family of sets satisfying:

(2a) If Q ~ V~W and x E V then:

x s RQQ(x)

, , RQw ~ (2b) If Q ~ V~W, Wl, Wl, w 2 ~ W, w I = w I, r I e RQ(wl÷w2), and r 2 s ~ then:

(r I r 2) s RQw 2

(2c) If Q ~ V~W, w I, w 2 s W, x s V, and r s R[QiXlWl] w2 then:

(%x c w I. r) s RQ(wl~W2)

(2d) If Q ~ V ~W, wl, w 2 c W, t E T, and r e RQ(At.Wl) then:

(r[w2]) e R
Q(Wll~ 2)

(2e) If Q s V ~W, w ~ W, t e T, r e RQw, and t does not occur free

in Q(x) for any x which occurs free in r, then:

(At. r) s RQ(&t.w)

(Again we have specified complete parenthesization, but will omit parentheses

according to common usage.) By structural induction on r, it is easy to show

that r ~ RQw and r c RQ implies w = w'
W v

The restriction on t in (2e) reflects the fact that the meaning of t in

At. r is distinct from its meaning in the surrounding context. For example,

Q(x) = t does not imply At.x ~ RQ(At.t).

414

Semantics

We will interpret our language in terms of the lattice-theoretic approach

of D. Scott~9-12~ntuitively the effect of a type expression is to produce a

Scott domain given an assignment of a domain to each free type variable occurring

in the type expression. Thus we expect the meaning of type expressions to be

given by a function

B s W==~J0T~Jo

where~denotes the class of all domains.

To specify B we consider each of the cases-in the syntactic definition of W:

(la) Obviously,

B[t](D) = D(t)

(We will use barred variables to denote functions of T, and square

brackets to denote application to syntactic arguments.)

(ib) We intend w I ÷ w 2 to denote the domain of continuous functions

from the domain denoted by w I to the domain denoted by w 2. Thus

B[w I ~ w2](D) = arrow(B[Wl](D), B[w2](D))

where arrow e (~xJO)~O satisfies

arrow(D I, D 2) = D 1 ÷ D 2.

(ic) We intend At. w to denote a set of functions over the class of

domains which, when appl~ed to a domain D will produce some element

of the domain denoted by w under the assignment of D to t. Thus

B[At. w](~) = delta(%D ~. B[w][DItID])

where delta s (J~D)=7~)satisfies

delta(e) ~ ~ e(D)
DsJO

We leave open the possibility that delta(e) may be a proper subset

of the above expression. (Indeed, if we are going to avoid the

paradoxes of set theory and consider delta(@) to be a domain, it had

better be a very proper subset.)

By structural induction, one can show that w = w' implies B[w] = B[w'], and

that

B[w I I~2](~) = B[Wl][~ I t i B[w2](~)]

415

The effect of a normal expression is to produce a value, given an

assignment of domains to its free type variables and an assignment of values

to its free normal variables.(We will call the latter assignment an environment.)

However, this effect must conform to the type structure. When given a type

assignment D, a normal expression r s RQw must only accept environments which

map each variable x into a member of the domain B[Q(x)](D), and r must produce

a member of the domain B[w](D). Thus we expect that, for all Q c V~W and

w ~ W, the meaning of the normal expressions in RQw will be given by a function

MQw e R~ ==k H m(Env~(D) + B[w](D))

where

EnVQ(D) = ~ B[Q(x)](D) .
xgV

To specify the MQw we consider each of the cases in the syntactic

definition of RQw. Essentially the specification is an immediate consequence

of the intuitive meaning of the language, guided by the necessity of making the

functionalities come out right:

(2a) MQQ(x)[X](D)(e) = e(x)

(2b) MQw2[r I r2] (D) (e) = (MQ(wl_>W2) [r I] (D) (e)) (MQwi[r2] (D) (e))

(2c) MQ(wl+w2) [Xx c w I. r] (D) (e)

= Xac B[Wl](D). M[QiXlWl]W2[r](~)[elxla]

(2d) M = Q(Wl i~2) [r [w2]] (~) (e) (MQ(~t.Wl) [r] (D) (e)) (B [w2](~))

(2e) MQ(At.w)[At. r](D)(e) = XD ~. MQw[r][DItlD](e)

416

Representations

Before we can formulate the representation theorem, we must specify what

we mean by representation.

For D, D' e 4/), the set of representations between D and D', written

rep(D, D'), is the set of continuous function pairs

rep(D, D') = { <~, 9> I @ ~ D ÷ D', 4 ~ D' ÷ D, 4"~ ~ I D, @'4 ~ I D, }

where I D denotes the identity function on D. For x E D, x' £ D', and

p = <~, 4> e rep(D, D'), we write

p: X ~ X ~

and say that x represents x' according to p if and only if

x ~ ~ (x ')

or equivalently,

¢(x) ~ x'

A pragmatic justification of this rather ad hoc definition is that it will

ultimately make the representation theorem correct. (Although this would still

be true if we took rep(D, D') to be the set of projection pairs between D and D',

i.e., if we replaced the requirement ~.~ ~I D by 4"~ = I D .) However, some

intuition is provided by the following connection with the notion of representation

between sets. Conventionally, we might say that a representation between a set S

and a set S' is simply a function ~ e S ~-2S ', and that x e S represents x' e S'

according to ~ iff ~(x) = x'. But if we take D and D' to be the powerset domains

2 S and 2 S' (with ~as~), and ~ and ~ to be the pointwise extensions of ~ and

its converse (as a relation), then p = <~,4> is a representation between D and D',

and p: sJ+ s' iff every x ~ s conventionally represents some x' e s' according

to ~.

The following is an obvious and useful extension of our definition.

For D, D' g j~T, we define

rap(D, D')= ~ rep(D(t), D'(t)) .
teT

417

The Representation Theorem

At this point, we can formulate a preliminary version of the representation

theorem. Consider the set of normal expressions RQw,and suppose that D, D' E ~T

and ~ ~ rep(D, D'), so that for each type variable t, p(t) is a representation

between the domains D(t) and D'(t) o Moreover, suppose that e and e' are

environments such that,for each normalvariable x, e(x) represents e'(x)

according to the relevant representation, i.e., ~(Q(x)). Then we expect that

the value of any r s RQw when evaluated with respect to D and e should

represent the value of the same normal expression when evaluated with respect to

D' and e', according to the relevant representation, i.e., ~(w).

More formally:

Let Q ~ V ---'FW, w ~ W, D, D' eJO~ 7 E rep(D, D'), e ~ ENVQ (D),

and e' ~ EnVQ (D'). If

(Vx ~ V) 7(Q(x)): e(x) ~+ e'(x)

then

(~r c RQw) 7(w): MQw[r] (D) (e) ~ MQw[r](D')(e')

However, this formulation has a serious flaw. In choosing ~, we assign

a representation to every type variable, but not to every type expression~

so that the representations ~(Q(x)) and ~(w) are not fully defined. Moreover,

we can hardly expect to assign an arbitary representation to every type expression.

For example, once we have chosen a representation for integer and a representation

for real, we would expect that this choice would determine a representation for

integer + real and for any other type expression constructed from integer and real.

In brief, we have underestimated the meaning of type expressions. Not only

must B[w] map an assignment of domains to type variables into a domain, but it must

also map an assignment of representations into a representation. If we can extend

the meaning of B to do so, then a correct formulation of the representation

theorem is:

Let Q ~ V ~W, w ~ W, D, D' E~)T, 7 ~ rep(D, D'), e E EnvQ (D),

and e' s EnVQ (D'). If

(~x e V) B[Q(x)](~): e(x) ~+ e'(x)

then

(Vr ~ RQw) B[w](p): MQw[r] (D) (e) ~+ MQw[r](D')(e')

418

The Full Semantics of Type Expressions

In order to extend the semantic function B, we first note that the

combination of domains and representations forms a category. We write C to

denote the category, called the category of types, in which the set of objects

is J~, the set of morphisms from D to D' is rep(D, D'), composition is given by

<¢', ~'> • <0, 4 > = <¢"0, ~'~'>

and the identity for D is

~D = <ID' ID>

From the category of types, we can form two further categories by standard
!13 c T constructions of category theory e write to denote the category in which

the set of objects is~ T, the set of morphisms from ~ to D' is rep(D, D'),

composition is given by

(p "p) (t) = 7' (t)"7(0

and the identity for D is given by

&g(t) =4g(t)

We write Funct(C, C) to denote the category in which the objects are the

functors from C to C and the morphisms from 8 to O' are the natural transformations

from 8 to 8', i.e., the functions n s ~ rep(e(D),8'(D)) such that, for all
D~

D, D' e J0and p s rep(D, D'),

8' (p)'N(D) = h(D') "@(p)

Composition is given by

(~''o)(n) = n'(D)'N(D)

and the identity for e is given by

~e (D) = ~e(D)

419

We have seen that the meaning B[w] of a type expression w must map the

objects of C T into the objects of C and the morphisms of C T into the morphisms

of C. Moreover, if our formulation of the representation theorem is to be

meaningful, we must have

7 e rep(D, D') implies B[w](~) e rep(B[w](D), B[w](D'))

Thus, at least if we can satisfy the appropriate laws, we expect to extend

B[w] from a function from'~ T to j~ into a functor from C T to C.

Indeed, by pursuing the analogy of categories with sets and functors

with functions, we can induce the main structure of the definition of B[w].

For each of the cases in the syntactic definition of W:

(la) B[t](D) = D(t)

B [t] (7) = ~(t)

(ib) B[w I ÷ w2](D) = arrow(B[Wl](D), B[w2](D))

B[w I * w 2](7) = arrow(B[w I](7), B[w 2](7))

where arrow is a bifunctor from C x C into C.

(ic) B[At. w] = delta • abstract

where abstract is the functor from C T into Funct(C, C) such that

abstract(D)(D) = B[w][~I~ID]

abstract(D)(p) = B[w][~Itlp]

abstract(7)(D) = B[w][71t]#D]

and delta is a functor from Funct(C, C) into C.

Even before defining the functors arrow and delta, it can be shown that

B maps every type expression into a functor from C T into C, that w = w' implies

B[w] = B[w'], and that

B[WlI: 2](~) = B[Wl][D I t I B[w2](D)]

B[WlI~2](7) = B[Wl][~ I t I B[w2](~)]

420

The Functors arrow and delta

The definition of the functor arrow is fairly obvious. Essentially,

its action on representations is to produce the only reasonable composition

which matches domains correctly. For all DI, D 2 el9,

arrow(D I, D 2) = D I ÷ D 2

For all <~i' 41> s rep(Dl' Di) and <~2' 42> E rep(D2, D~),

arrow(<~l,41 >, <~2,42 >) =

< ~f E DI÷D 2. ~2"f'41, ~f e D 1 D 2. 42"f'~i >

(The action of arrow on representations is similar to the method used by

Scott to construct retraction or projection pairs for function spaces.)

The definition of arrow and the properties of representations give

the following lepta:

, ' ÷ D~ Pl ~ rep(Dl Di)' and P2 E rep(D 2, D~). Let f ~ D 1 + D 2 f' g D 1

Then

arrow(p I, P2): f,÷ f'

if and only if, for all x ~ D 1 and x' s D i,

PI: x'÷ x' implies P2: f(x),÷ f'(x') .

which, with the definition of B~gives the following lemma:

Let Wl, w 2 s W, ~ e rep(D, D'), f e B[w I ÷ w2](D) , and f' s B[w I + w2](D').

Then

B[w I + w2](~): f,÷ f'

if and only if, for all x ~ B[Wl](D) and x' e B[Wl](D'),

B[Wl](~): xJ+ x' implies B[w2](~): f(x)i+ f'(x')

(As an aside, we note that the definition of arrow establishes a connection

between our notion of representation and the concept of simulation~14~ypically,

one says that a function ~ s S =7S' is a simulation of a relation r ~ S × S by a

relation r'E S' x S' iff ~'r C__r'.~ (where • denotes relational composition).

But if f, f', ~, and 4 are the pointwise extensions of r, r', ~, and the converse

of ~, then ~.r ~ r'.~ iff arrow(p, p): fl~ f', where p = <@, 4>.)

421

The definition of the functor delta is less obvious. For all functors

e from C to C, delta(8) is the complete lattice with elements

{ f I f s H 8(D) and (VD, D' c~)(Vp s rep(D,D'))8(p): f(D) ~ f(D')
Ds~

with the partial ordering f ~ g iff (~D s~0) f(D) ~e(D) g(D). For all natural

transformations q from e to e',

delta(n) =

< %f e delta(e). %D sD. [q(D)]i(f(D)) ,

kf e delta(e'). %D g~. [~(D)]2(f(D)) >

At this point, we must admit a serious lacuna in our chain of argument.

Although delta(e) is a complete lattice (with (-~F)(D) = US(D) {f(D) I f s F }),

it is not known to be a domain, i.e., the question of whether it is continuous

and countably based has not been resolved. Nevertheless there is reasonable

hope of evading the set-theoretic paradoxes. Even though n e(D) is immense
DcJ~

(since JO is a class), the stringent restrictions on membership in delta(e)

seem to make its size tractable. For example, if f s delta(0), then the value

of f(D) determines its value for any domain isomorphic to D.

The definition of delta and the properties of representations give

the lemma:

Let q be a natural transformation from 8 to e', f s delta(e) and

f' g delta(e'). Then

delta(q): f~+ f'

if and only if, for all D, D' s J0, and p E rep(D, D'),

n(D')'e(p): f(D) ,+ f'(D')

which, with the definition of B, gives:

Let t ~ T, w ~ W, ~ e rep(D, D'), f E B[At. w](D), and f' c B[At. w](D').

Then

B[At. w](~): f~+ f'

if and only if, for all D, Des J9, and p e rep(D, D'),

B[w][~Itlp]: f(D),÷ f'(D')

From the final lemmas obtained about arrow and delta, the representation

theorem can be proved by structural induction on r.

422

Some Syntactic Manipulations

We have explore d our illustrative language semantically rather than

syntactically, i.e., we have provided it with a mathematical meaning instead

of investigating the syntactic consequences of reducibility. However, an

obvious question is raised by the fact that every expression in the typed

lambda calculus, but not the untyped lambda calculus, has a normal form. (8)

We have been unable to resolve this question for our language.

Nevertheless, the language permits some interesting constructions which are

not possible in the typed lambda calculus.

For example, consider the following normal expressions:

O n ~ At. If ~ t ÷ t. lx ~ t. ~----~f(... f(x) ...)

n times
of type ~ ~ At. (t ÷ t) + (t + t),

e 5 %h s ~. At. %f e t ÷ t. lx s t. f(h[t] f x)

of type ~ ÷ ~ (We assume application is left-associative.),

~ lg s ~ ÷ ~. Xh ~ ~. g(h[~] g pl)

of type (~ ÷ ~) ~ (~ ÷ ~), and

of type ~ ÷ (w + w). Then the following expressions are intereonvertible:

8 Pn = Pn+l

B Pm+l = ~ (B Pm)

B PO Pn = Pn+l

Pm+l PO = B Pm Pl

B Pm+l Pn+l ~ B Pm (B Pm+l Pn)

From the last three equations it follows that B Pm Pn = P~(n,m)' where ~(n,m)

is Ackermann's function.

423

Further Remarks

Since the writing of the preliminary version of this paper, considerable

attention has been given to the "serious lacuna" mentioned above. We have

managed to show that delta(e) is a continuous lattice, but not that it is

countably based. Conceivably, our notion of representation is too restrictive,

which would tend to make delta(8) unnecessarily large.

ACKNOWLEDGEMENT

The author would like to thank Dr. Lockwood Morris for numerous helpful

suggestions and considerable encouragement.

424

REFERENCES

i. Van Wijngaarden, A., Mailloux, B. J., Peck, J. E. L., and
Koster, C. H. A., Report on the Al@orithmic Language
ALGOL 68. MR i01 Mathematisch Centrum, Amsterdam,
October 1969. Also Numerische Mathematik 14 (1969) 79-218.

2. Cheatham, T. E., Jr•, Fischer, A., and Jorrand, P., On the
Basis for ELF-An Extensible Language Facility. Proc. AFIPS
1968 Fall Joint Comput. Conf., Vol. 33 Pt. 2, MDI Publications,
Wayne, Pa., pp. 937-948.

3. Reynolds, J. C., A Set-theoretic Approach to the Concept
of Type. Working paper, NATO Conf. on Techniques in
Software Engineering, Rome, October 1969.

4. Morris, J. H., "Protection in Programming Languages,"
Comm. ACM, 16 (i), January 1973.

5. Morris, J. H., Types are not Sets. Proc. ACM Symposium on
Principle of Programming Languages, Boston 1973, pp. 120-124.

6. Fischer, A. E., and Fischer, ~. J., Mode Modules as
Representations of Domains. Proc. ACM Symposium on Principles
of Programming Languages, Boston 1973, pp. 139-143.

7. Liskov, B., and Zilles, S., An Approach to Abstraction.
Computation Structures Group Memo 88, Project MAC, MIT,
September 1973.

8. Morris, J. H., Lambda-calculus Models of Programming
Languages. MAC-TR-57, Project MAC, MIT, Cambridge,
Mass., December 1968.

9. Scott, D., "Outline of a Mathematical Theory of Computation,"
Proc. Fourth Annual Princeton Conf. on Information Sciences
and Systems ' (1970), pp. 169-176. Also, Tech. Monograph
PRG-2, Programming Research Group, Oxford University Computing
Laboratory, November 1970.

i0. • "Continuous Lattices," Proc. 1971 Dalhousie Conf.,
Springer Lecture Note Series, Springer-Verlag, Heidelberg.
Also, Tech. Monograph PRG-7, Programming Research Group,
Oxford University Computing Laboratory, August 1971.

ii. • "Mathematical Concepts in Programming Language
Semantics," AFIPS Conference Proc., Vol. 40, AFIPS Press,
Montvale, New Jersey (1972), pp. 225-234.

12. "Data Types as Lattices", Notes, Amsterdam,
June i972.

13. MacLane, S., Categories for the Working Mathematician,
Springer-Verlag, New York 1971.

425

14. Morris, F. L., Correctness of Translations of Programming
Languages -- An Algebraic Approach, Stanford Computer
Science Department Report STAN-CS-72-303, August 1972.

