
LR Parsing

A. V. AHO and S. C. JOHNSON

Bell Laboratories, Murray Hzll, New Jersey 07974

The LR syn tax analysis method is a useful and versat i le technique for parsing
determinis t ic context-free languages in compil ing applicat ions. This paper
provides an informal exposit ion of L R parsing techniques emphasizing the
mechanical generat ion of efficient L R parsers for context-free grammars .
Pa r t i cu la r a t t e n t m n is given to extending the parser generat ion techniques to
apply to ambiguous grammars .

Keywords and phrases: grammals , parsels , compilers, ambiguous grammars ,
context-free languages, LR grammars .

CR calegorzes. 4 12, 5 23

1. INTRODUCTION

A complete specification of a programming
language must perform at least two func-
tions. First, it must specify the syntax of the
language; that is, which strings of symbols
are to be deemed well-formed programs.
Second, it must specify the semantics of the
language; that is, what meaning or intent
should be at tr ibuted to each syntactically
correct program.

A compiler for a programming language
must verify that its input obeys the syntactic
conventions of the language specification. I t
must also translate its input into an object
language program in a manner that is con-
sistent with the semantic specification of the
language. In addition, if the input contains
syntactic errors, the compiler should an-
nounce their presence and t ry to pinpoint
their location. To help perform these func-
tions every compiler has a device within it
called a parser.

A context-free grammar can be used to
help specify the syntax of a programming
language. In addition, if the grammar is de-
signed carefully, much of the semantics of
the language can be related to the rules of
the grammar.

There are many different types of parsers
for context-free grammars. In this paper we

shall restrict ourselves to a class of parsers
known as LR parsers. These parsers are
efficient and well suited for use in compilers
for programming languages. Perhaps more
important is the fact that we can automati-
cally generate LR parsers for a large and use-
ful class of context-free grammars. The pur-
pose of this article is to show how LR parsers
can be generated from certain context-free
grammars, even some ambiguous ones. An
important feature of the parser generation
algorithm is the automatic detection of
ambiguities and difficult-to-parse constructs
in the language specification.

We begin this paper by showing how a
context-free grammar defines a language.
We then discuss LR parsing and outline the
parser generation algorithm. We conclude
by showing how the performance of LR
parsers can be improved by a few simple
transformations, and how error recovery and
"semantic actions" can be incorporated into
the LR parsing framework.

For the purposes of this paper, a sentence
is a string of terminal symbols. Sentences are
written surrounded by a pair of single quotes.
For example, 'a', 'ab', and ',' are sentences.
The empty sentence is written ". Two sen-
tences written contiguously are to be con-
catenated, thus 'a' 'b' is synonymous with

Computing Surveys, Vol 6, No 2, June 1974

100 • A. V. Aho and S. C. Johnson

CONTENTS 'ab'. I n this paper the te rm language merely
means a set of sentences.

1 ln t roduc tmn
2 G r a m m a r s
3 Der lva tmn Trees
4 Parsers
5 Represent ing the Pars ing Actmn and Goto Tables
6 Cons t ruc tmn of a Parser from a G r a m m a r

6 I Sets of I t e m s
62 Const ruct ing the Collectmn of Accesmble Sets of

I t ems
63 Const ruc t ing the Pars ing Actmn and Goto

Tables from the Collectmn of Sets of I t ems
64 C o m p u t i n g Lookahead Sets

7 Pars ing Ambiguous G r a m m a r s
8 0 p t l m l z a t m n of L R Parsers

81 Merging Identmal States
82 Subsuming States
83 E h m m a t m n of Reduc tmns by Single Productmns

9 Error Recovery
l0 O u t p u t
11 Concluding R e m a r k s
References

Copyright (~) 1974, Association for Computing
Machinery, Inc General permission to repubhsh,
but not for profit, all or part of thin materml is
granted, provided that ACM's copyright notice is
given and that reference is made to this publica-
tion, to its date of issue, and to the fact that re-
printing priwleges were granted by permission of
the Association for Computing Machinery.

2. GRAMMARS

A g r a m m a r is used to define a language arid
to impose a s t ructure on each sentence in
the language. We shall be exclusively con-
cerned with context-free grammars, sometimes
called B N F (for Backus -Naur form) specifi-
cations.

In a context-free grammar , we specify
two disjoint sets of symbols to help define a
language. One is a set of nonterminal symbols.
We shall represent a nonterminal symbol by
a str ing of one or more capital roman letters.
For example, L I S T represents a nonterminal
as does the letter A. In the g rammar , one
nonterminal is dist inguished as a start (or
sentence) symbol .

The second set of symbols used in a con-
text-free g r a m m a r is the set of termznal
symbols. The sentences of the language gen-
erated by a g r a m m a r will contain only
terminal symbols. We shall refer to a termi-
hal or nontcrminal symbol as a grammar
symbol.

A context-free g r a m m a r itself consists of a
finite set of rules called productzons. A
product ion has the form

left-side ~ right-side,

where left-side is a single nonterminal symbol
(sometimes called a syntact ic category) and
right-side is a s tr ing of zero or more g r a m m a r
symbols. The ar row is s imply a special
symbol t ha t separates the left and r ight
sides. For example,

L I S T ~ L I S T ' , ' E L E M E N T

is a product ion in which L I S T and E L E -
M E N T are nonterminal symbols, and the
quoted comma represents a terminal sym-
bol.

A g r a m m a r is a rewrit ing system. If aA'r
is a s tr ing of g r a m m a r symbols and A --+ fl
is a product ion, then we write

~A-y ~ a~7

and say tha t aA'y directly derives a~'y. A
sequence of strings

s 0 , S l , - - - , S n

such tha t s,-~ ~ s , for 1 ~< i ~< n is said to
be a derwalwn of s~ from ~0. We sometimes
also say s~ is derivable from s0.

The s tar t symbol of a g rammar is called a
sentent,al form. A string derivable from the
s tar t symbol is also a sententml form of the
grammar. A sentential form containing only
terminal symbols is said to be a sentence
generated by the grammar. The language
generated by a grammar (;, often denoted
by L(G), is the set of sentences generated by
G.

Example 2.1: The following grammar,
hereafter called G~, has L IST as its s tar t
symbol:

L IST --~ LIST ' , ' E L E M E N T
LIST --* E L E M E N T
E L E M E N T ~ 'a '
E L E M E N T --~ 'b'

The sequence:

LIST ~ L IST ' , ' E L E M E N T
LIST ' ,a '
L IST ' , ' E L E M E N T ' ,a '
L IST ',b,a'
E L E M E N T ',b,a'
'a,b,a'

is a derivation of the sentence 'a,b,a'. L(G~)
consists of nonempty strings of a 's and b's,
separated by commas.

Note that in the derivation in Example
2.1, the rightmost nonterminal in each sen-
tential form is rewritten to obtain the fol-
lowing sentential form. Such a derivation is
said to be a r~ghlmost der~valzo~ and each sen-
tential form in such a derivation is called a
mght se~le~t~al form. For example,

L IST ',b,a'

is a right sentential form of C1.
If s A w is a right sentential form in which

w is a string of terminal symbols, and s A w ~
s~w, then ~ is said to be a handle of s~w *
For example, 'b' is the handle of the right
sentential form

LIST ',b,a'

in Example 2.1.

• S o m e a u t h o r s u s e a m o r e r e s t m c t m g d e h n l t m n o f
h a n d l e

LR Parsing • 101

A prefix of a~ in the right sentential form
af3w is said to be a wable prefix of the gram-
mar. For example,

L IST ' , '

is a viable prefix of G1, since it is a prefix of
the right sentential form,

L IST ' , ' E L E M E N T

(Both s and w are null here.)
Restating this definition, a viable prefix of

a g rammar is any prefix of a right sentential
form tha t does not extend past the right end
of a handle in tha t right sentential form.
Thus we know that there is always some
string of g rammar symbols tha t can be ap-
pended to the end of a viable prefix to ob-
tain a right sentential form. Viable prefixes
arc important in the construction of com-
pilers with good error-detecting capabilities,
as long as the portion of the input we have
seen can be derived from a viable prefix,
we can be sure tha t there are no errors tha t
can be detected having scanned only tha t
par t of the input.

3. DERIVATION TREES

Frequently, our interest in a g rammar is
not only in the language it generates, but
also in the structure it imposes on the sen-
tences of the language. This is the case be-
cause grammatical analysis is closely con-
nected with other processes, such as compila-
tion and translation, and the translations or
actions of the other processes are frequently
defined in terms of the productions of the
grammar. With this in mind, we turn our
at tention to the representation of a deriva-
tion by its demvatwn tree.

For each derivation in a g rammar we can
construct a corresponding derivation tree.
Let us consider the derivation in Example
2.1. To model the first step of the derivation,
in which LIST is rewrit ten as

L IST ' , ' E L E M E N T

using production 1, we first create a root
labeled by the s tar t symbol LIST, and then
create three direct descendants of the root,
labeled LIST, ', ', and E L E M E N T :

Coraputmg Surveys, Vol 6, No 2, June 1974

102

(

• A . V . Aho and S. C. Johnson

• ,ST) ~) -""
(We follow historical usage and draw our
" roo t" node at the top.) In the second step
of the derivation, E L E M E N T is rewrit ten
as 'a'. To model this step, we create a direct
descendant labeled 'a' for the node labeled
E L E M E N T :

LIST)

(LIST~ (~ ~LEMENT~)

Continuing in this fashion, we obtain the
following tree:

Note tha t if a node of the derivation tree is
labeled with a nonterminal symbol A and its
direct descendants are labeled X1, X2, - . . ,
X, , then the production.

A - - ~ X 1 X 2 . . . Xn

must be in the grammar.
If a~, a2, . . . , am are the labels of all the

leaves of a derivation tree, in the natural
left-to-right order, then the string

al a2 • • • a m

is called the frontier of the tree. For example,
'a,b,a' is the frontier of the previous tree.
Clearly, for every sentence in a language

there is at least one derivation tree with
that sentence as its frontier. A grammar tha t
admits two or more distinct derivation trees
with the same frontier is said to be ambigu-
ous.

Example 3.1: The g rammar G2 with pro-
ductions

L IST --* L I S T ' , ' L I S T
LIST --~ 'a'
L I S T --* 'b'

is ambiguous because the following two
derivation trees have the same frontier.

(
LIST)

• ,ST ~ © ~ .,ST ~
@< ,,s, ~ © ¢ ,,ST

® @
)

LIST
G

LIST)
L,,T ~ © ~ ,,,T

~ © ~ L,,T ~ ~
)

In certain situations ambiguous grammars
can be used to represent programming
languages more economically than equiva-
lent unambiguous grammars. However, if an
ambiguous g rammar is used, then some other
rules should be specified along with the
g rammar to determine which of several
derivation trees is to be associated with a
given input. We shall have more to say
about ambiguous grammars in Section 7.

4. PARSERS
We can consider a parser for a g rammar to be
a device which, when presented with an
input string, a t tempts to construct a deriva-

Coraputmg Surveys, Vol 6, No. 2, June 1974

tion tree whose frontier matches the input.
If the parser can construct such a derivation
tree, then it will have verified that the input
string is a sentence of the language generated
by the grammar. If the input is syntactically
incorrect, then the tree construction process
will not succeed and the positions at which
the process falters can be used to indicate
possible error locations.

A parser can operate in many different
ways. In this paper we shall restrict ourselves
to parsers that examine thc input string
from left to right, one symbol at a time.
These parsers will at tempt to construct the
derivation tree "bot tom-up"; i.e., from the
leaves to the root. For historical reasons,
these parsers are called L R parsers. The "L"
stands for "left-to-right scan of the input",
the " R " stands for "nghtmost derivation."
We shall see that an LR parser operates by
reconstructing the reverse of a rightmost
derivation for the input. In this section we
shall describe in an informal way how a cer-
tain class of LR parsers, called LR(1)
parse-% operate.

An LR parser deals with a sequence of
partially built trees during its tree construc-
tion process. Wc shall loosely call this se-
quence of trees a forest. In our framework the
forest is built from left to right as the input
is read. At a particular stage in the construc-
tion process, we have read a certain amount
of the input, and we have a partially con-
structed derivation tree. For example, sup-
pose that we are parsing the input string
'a,b' according to the grammar (ix. After
reading the first 'a ' we construct the tree:

Q
Then we construct:

~LEMENT~

L R Parsing • 103

using the production, -.

E L E M E N T -~ 'a'

To reflect this parsing action, we say that 'a '
is reduced to E L E M E N T . Next we use the
production

LIST --~ E L E M E N T

to obtain the tree:

I
(ELE MENT~

Here, E L E M E N T is reduced to LIST. We
then read the next input symbol ',', and
add it to the forest as a one node tree.

LIST)
I,

(ELEMENT~
©

We now have two trees. These trees will
eventually become sub-trees in the final
derivation tree. We then read the next input
symbol 'b' and create a single node tree for
it as well'

LIST)
I

~LEMENT~
© Q

Using the production,

E L E M E N T --~ 'b'

Comput ing Surveys, Vol 6, No 2, June 1974

104 • A . V. Aho and S. C. Johnson

we reduce 'b' to E L E M E N T to obtain:

LIST)
I

~LEMENT~ ~ELEMENT~

Finally, using the production

LIST --~ LIST ',' E L E M E N T

we combine these three trees into the final
tree:

(

I

<b

L IST

()

)
\

At this point the parser detects that we have
read all of the input and announces that the
parsing is complete. The rightmost deriva-
tion of 'a,b' in G1 is

LIST ~ LIST ',' E L E M E N T
LIST ',b'
E L E M E N T ',b'
'a,b'

In parsing 'a,b' in the above manner, all we
have done is reconstruct this rightmost
derivation in reverse. The sequence of pro-
ductions encountered in going through a
rightmost derivation in reverse is called a
right parse.

There are four types of parsing actions
that an LR parser can make; shift, reduce,
accept (announce completion of parsing), or
announce error.

In a shift action, the next input symbol is
removed from the input. A new node labeled
by this symbol is added to the forest at the
right as a new tree by itself.

In a reduce action, a production, such as

A ---~X1X2 . . . X=

is specified; each X~ represents a terminal or
nonterminal symbol. A reduction by this
production causes the following operations:

(1) A new node labeled A is created.
(2) The rightmost n roots in the forest

(which will have already been labeled
X1, X2, - . . , X,) are made direct
descendants of the new node, which
then becomes the rightmost root of the
forest.

If the reduction is by ~ production of the
form

A __+ ,,

(i.e., where the right side is the empty
string), then the parser merely creates a root
labeled A with no descendants.

A parser operates by repeatedly making
parsing actions until either an accept or error
action occurs.

The reader should verify tha t the follow-
ing sequence of parsing actions builds the
parse tree for 'a,b' in GI:

(1) Shift 'a'
(2) Reduce by: E L E M E N T -+ 'a'
(3) Reduce by: LIST --+ E L E M E N T
(4) Shift ','
(5) Shift 'b'
(6) Reduce by. E L E M E N T -+ 'b'
(7) Reduce by: L I S T - - ~ L IS T ', '

E L E M E N T
(8) Accept

We now consider the question of how an LR
parser decides what parsing actions to make.
Clearly ~ parsing action can depend on what
actions have already been made and on what
the next input symbols are. An LR parser
that looks at only the next input symbol to
decide which parsing action to make is
called an LR(1) parser. If it looks at the
next k input symbols, k >/ 0, it is called an
LR(k) parser. To help to make its parsing
decisions, an LR parser attaches to the root
of each tree in the forest a number called a
state. The number on the root of the right-
most tree is called the current state. In addi-
tion, there is an re ,hal state to the left of the
forest, which helps determine the very first

Computing Surveys, Vol 6, No 2, June 1974

parsing action. We shall write the states in
parentheses above the associated roots. For
example,

(0)

(I)
(UST)

I @LEMENT~
(5)

©
represents a forest with states. State 5 is the
current state, and state 0 is the initial state.
The current s tate and the next input symbol
determine the parsing action of an LR(1)
parser.

The following table shows the states of an
LR(1) parser for G1, and the associated pars-
ing actions. In this table there is a column
labeled '$' with special significance. The '$'
stands for the right endmarker, which is
assumed to be appended to the end of all
input strings. Another way of looking at this
is to think of '$ ' as representing the condi-
tion where we have read and shifted all of
the "real" characters in the input string.

0
1
2

Current 3
State 4

5
6

FIG. I .

N e x t I n p u t Symbol

'a' 'b' ' , ' '$'

sh i f t
e r ror
e r ror
e r ro r
e r ror
sh i f t
e r ro r

shift
error
error
error
er ror
sh i f t
e r ror

e r ro r
sh i f t
Red. 2
Red. 3
Red. 4
e r ror
Red. 1

e r ror
accept
Red 2
Red. 3
Red. 4
e r ro r
Red 1

Pa r s ing Act ion Table for Gt

The reduce actions are represented as
"Red. n" in the above table; the integer n
refers to the productions as follows:

(1) L I S T -~ L IST ' , ' E L E M E N T
(2) L I S T --+ E L E M E N T
(3) E L E M E N T --+ ' a '
(4) E L E M E N T --~ 'b'

We shall refer to the entry for row s and
column c as pa(s,c). After making either a

L R Parsing • 105

shift move or a reduce move, the parser
must determine what state to a t tach to the
root of the tree tha t has just been added to
the forest. In a shift move, this s tate is de-
termined by the current s tate and the input
symbol tha t was just shifted into the forest.

For example, if we have just shifted ' , '
into the forest

(1)

Io, ©

then state 1 and ' , ' determine the state to be
at tached to the new rightmost root ', ' .

In a reduce move, suppose we reduce by
production

A --* X1X2 . . . X ,

When we make nodes X1, . - . , X,, direct
descendants of the root A, we remove the
states tha t were at tached to X1, . . . , Xn.
The state tha t is to be at tached to node A
is determined by the state tha t is now the
rightmost state in the forest, and the non-
terminal A. For example, if we have just
reduced by the production

L IST -~ LIST ' , ' E L E M E N T

and created the forest

(0)

(
C ",st ?"
 LE EN,)

G

LIST)

I
© G

then state 0 and the nonterminal L IST de-
termine the state to be at tached to the root
LIST. Note tha t the states previously at-
tached to the direct descendants of the new

Computing Surveys, Vol 6, No. 2, June 1974

106 • A. V. Aho and S. C. Johnson

root have disappeared, and play no role in
the calculation of the new state.

The following table determines these new
states for G1. For reasons that will become
apparent later, we shall call this table the
goto table for G1.

RIGHTMOST
STATE

FIG 2.

LABEL OF NEW ROOT

LIST ELEMENT 'o' 'b' ' , '

1 2 3 4

5

6 3 4

BOTO TABLE FOR G.I

Goto Table for G1

We shall refer to the entry in the row for
state s and column c as goto(s, c). I t turns
out tha t the entries in the goto table which
are blank will never be consulted [Aho and
Ullman (1972b)].

An LR parser for a grammar is completely
specified when we have given the parsing
action table and the goto table. We can
picture an LR(1) parser as shown in Fig. 3.

,NPUT I ° 1 ' Ib l * l
4 INPUT CURSOR

/ '~OREST CONSISTING ~ ' ~
(OF PARTIALLY CON-- ~ LR(I) I
\ STRUCTEDDERIVATION] I PARSING I
\ TREE WITH STATES / I ALGORITHM I

ATTACHED ~ ~

FIo. 3. Plctomal Representatmn of an LR(1)
Parser

The LR(1) parsing algorithm can be sum-
marized as follows:

Initmlize: Place the initial state into an
otherwise empty forest; the initial state is
the current state at the beginning of the
parse.

Parsing Action: Examine the parsing ac-
tion table, and determine the entry cor-

responding to the current state and the
current input symbol. On the basis of this
entry (Sh~ft, Reduce, Error, or Accept) do
one of the following four actions:

Shift: Add a new node, labeled with the
current input symbol, to the forest. Associ-
ate the state

goto(current state, input)

to this node and make this state the new cur-
rent state. Advance the input cursor to
read the next character. Repeat the step
labeled Parsing Action.

Reduce: If the indicated production is

A --~XIX2 "'" Xn

add a new node labeled A to the forest, and
make the rightmost n roots, n /> 0, direct
descendants of this new node. Remove the
states associated with these roots. If s is the
state which is now rightmost in the forest
(on the root immediately to the left of the
new node), then associate the state

goto(s ,A)

with the new node. Make this state the new
current state. (Notice that the input charac-
ter is not changed.) Repeat the step labeled
Parsing Action.

Accept: Halt. A complete derivation tree
has been constructed.

Error: Some error has occurred in the
input string. Announce error, and then t ry
to resume parsing by recovering from the
error. (This topic is discussed in Section 9.)

To see how an LR parser works, let us
again parse the input string 'a,b' using the
parsing action function pa (Figure 1) and
the go to function (Figure 2).

Initial,zatwn: We place state 0 into the
forest; 0 becomes the current state.

Parsing Actwn 1: pa(0, 'a') = shift. We
create a new root labeled 'a' and at tach state
3 to it (because goto(0, 'a') = 3). We have:

(3)
(0) Q

Computing Surveys, Vol. 6, No. 2, June 1974

Parsing Actwn 2: pa(3, ', ') = reduce 3.
We reduce by production (3)

E L E M E N T --* 'a '

We examine the state immediately to the
left; this is state 0. Since goto(0, ELE-
M E N T) = 2, we label the new root with 2.
We now have:

(2)
~..ELEMEN 9

(0)

Parsing Action 3: pa(2, ',') = reduce 2.
We reduce by production (2)

L IST -~ E L E M E N T

goto(0, LIST) = 1, so the new state is 1.
Parsing Action 4: pa(1, ' , ') = shift. We

shift and at tach state 5.
Parsing Action 5: pa(5, 'b') = shift. We

shift and at tach state 4. We now have

(o)

(1)

LIST)
I

® (5) (4)
© @

Parszng Action 6: pa(4, '$') = reduce 4.
We reduce by production (4)

E L E M E N T -~ 'b'

goto(5, E L E M E N T) = 6, so the new state
is 6. We now have

(01

(t)

(LIST)
I (ELEMEN 9 (6)

(5) (ELEMENT)
© @

LR Parsing • 107

Parsing Action 7: pa(6, '$') = reduce 1.
We reduce by production (1)

L IST --~ L I S T ' , ' E L E M E N T

The state to the left of the newly created
tree is state 0, so the new state is goto(0,
LIST) = 1.

Parsing Action 8: pa(1, '$') = accept. We
halt and terminate the parse.

The reader is urged to follow this pro-
cedure with another string, such as 'a,b,a' to
verify his understanding of this process. I t is
also suggested tha t he t ry a string which is
not in L(G1), such as 'a,ba' or 'a,,b', to see
how the error detection mechanism works.
Note tha t the g rammar symbols on the roots
of the forest, concatenated from left to right,
always form a viable prefix.

Properly constructed LR(1) parsers can
parse a large class of useful languages called
the deterministic context-free languages. These
parsers have a number of notable properties:

(1) They report error as soon as possible
(scanning the input from left to right).

(2) They parse a string in a t ime which is
proportional to the length of the
string.

(3) They require no rescanning of previ-
ously scanned input (backtracking).

(4) The parsers can be generated mechan-
ically for a wide class of grammars,
including all grammars which can be
parsed by recursive descent with no
backtracking [Knuth (1971)] and
those grammars parsable by operator
precedence techniques [Floyd (1963)].

The reader may have noticed tha t the
states can be stored on a pushdown stack,
since only the rightmost state is ever used
at any stage in the parsing process. In a
shift move, we stack the new state. In a
reduce move, we replace a string of states on
top of.the stack by the new state.

For example, in parsing the input string
'a,b' the stack would appear as follows at
each of the actions referred to above. (The
top of the stack is on the right.)

A ctwn Stack Input

In i t ia l 0 'a ,b$'
1 0 3 ',b$'
2 0 2 ',b$'
3 0 1 ',b$'
4 0 1 5 'b$'

Computing Surveys, VoL 6, No 2, Juue 1974

108 • A . V . A h o and S . C. Johnson

Actwn Stack Input

5 0 1 5 4 '$'
6 0 1 5 6 '$'
7 0 1 '$'
8 0 1 '$'

Thus, the parser control is independent of
the trees, and depends only on a stack of
states. In practice, we may not need to con-
struct the derivation tree explicitly, if the
translation being performed is sufficiently
simple. For example, in Section 10, we men-
tion a class of useful translations tha t can
be performed by an LR parser without re-
quiring the forest to be m a i n t a i n e d .

If we wish to build the derivation tree, we
can easily do so by stacking, along with each
state, the root of the tree associated with tha t
state.

5. REPRESENTING THE PARSING ACTION AND
GOTO TABLES

Storing the full action and goto tables
straightforwardly as matrices is extremely
wasteful of space for large parsers. For ex-
ample, the goto table is typically nearly all
blank. In this section we discuss some simple
ways of compacting these tables which lead
to substantial savings of space; in effect, we
are merely representing a sparse matrix more
compactly, using a particular encoding.

Let us begin with the shift actions. I f x is
a terminal symbol and s is a state, the parsing
action on x in state s is shift if and only if
goto(s , x) is nonblank. We will encode the
goto into the shift action, using the notat ion

s h i f t 17

as a shorthand for "shift and a t tach state 17
to the new node." By encoding the gotos on
terminal symbols as part of the action table,
we need only consider the gotos on non-
terminal symbols. We will encode them by
columns; i.e., by nonterminal symbol name.
If, on a nonterminal symbol A, there are
nonblank entries in the goto table corre-
sponding to states s~, s2, • • • , sn, and we have

s, ' = goto(s , , A), for i = 1, . - . , n
then we shall encode the column for A in a
pseudo-programming language:

A: i f (state = sl) goto = sl '

i f (state = s n) g o t o = s~'

The goto table of G1 would be represented in
this format as:

LIST: i f (state = 0) g o t o = 1
E L E M E N T : i f (state = 0) g o t o = 2

i f (state = 5) g o t o = 6

I t turns out tha t [Aho and Ullman (1972b)]
whenever we do a goto on A, the state will
always be one of sl, • • • , sn, even if the input
string is in error. Thus, one of these branches
will always be taken. We shall return to this
point later in this section.

We shall encode parsing actions in the
same spirit, but by rows of the table. The
parsing actions for a state s will also be
represented by a sequence of pseudo-pro-
gramming language statements. I f the input
symbols al, . . . , a= have the associated
actions actionl, . . . , actionn, then we will
write:

s: i f (input = al) a c t i o n 1

i f (input = an) ac t ionn

As we mentioned earlier, we shall a t tach
goto(s,a,) onto the action if action~ is shift.
Similarly, if we have a reduction by the
production A --* a, we will usually write

r e d u c e b y A --~ a

as the action.
For example, the parsing actions for state

1 in the parser for G~ are represented by:

1: i f (input = 'a') e r r o r
i f (input = 'b') e r r o r
i f (input = ' , ') s h i f t 5
i f (input = '$') a c c e p t

At first glance this is no saving over the
table, since the parsing action table is
usually nearly full. We may make a large
saving, however, by introducing the notion
of a default action in the statements. A
default action is simply a parsing action
which is done irrespective of the input char-
acter; there may be at most one of these in
each state, and it will be writ ten last. Thus,
in state 1 we have two error actions, a shift

Comput ing Surveys, Vol 6, No 2, June 1974

action, and an accept action, we shall make
the error action the default. We will write:

1: i f (input = ' , ') s h i f t 5
i f (input = $) a c c e p t
e r r o r

There is an additional saving which is
possible. Suppose a state has both error and
reduce entries. Then we may replace all
error entries in that state by one of the re-
duce entries. The resulting parser may make
a sequence of reductions where the original
parser announced error but the new parser
will announce error before shifting the next
input symbol. Thus both parsers announce
error at the same position in the input, but
the new parser may take slightly longer be-
fore doing so.

There is a benefit to be had from this modi-
fication; the new parsing action table will re-
quire less space than the original. For
example, s tate 2 of the parsing action table
for G1 would originally be represented by:

2: i f (input = 'a') e r r o r

i f (input = 'b') e r r o r

i f (input = ' , ') r e d u c e 2
i f (input = '$') r e d u c e 2

Applying this transformation, state 2 would
be simply represented as:

2: r e d u c e 2

Thus in a state with reduce actions, we
will always have the shift and accept actions
precede the reduce actions. One of the reduce
actions will become a default action, and we
will ignore the error entries. In a state with-
out reduce actions, the default action will be
error. We shall discuss other means of cut-
ting down on the size of a parser in Section 8.

6. CONSTRUCTION OF A PARSER FROM A
GRAMMAR

How do we construct the parsing action and
goto tables of an LR(1) parser for a given
grammar? In this section we outline a
method that works for a large class of
grammars called the lookahead LR(1)
(LALR(1)) grammars.

The behavior of an LR parser, as described

L R Parsing • 109

in the last section, is dictated by the current
state. This state reflects the progress of the
parse, i.e., it summarizes information about
the input string read to this point so tha t
parsing decisions can be made.

Another way to view a state is to consider
the state as a representative of an equiva-
lence class of viable prefixes. At every stage
of the parsing process, the string formed by
concatenating the grammar symbols on the
roots of the existing subtrees must be a vi-
able prefix; the current s tate is the repre-
sentative of the class containing tha t viable
prefix.

6.1 Sets of Items
In the same way tha t we needed to discuss

partially built trees when talking about pars-
ing, we will need to talk about "part ial ly
recognized productions" when we talk about
building parsers. We introduce the notion of
item* to deal with this concept. An i tem is
simply a production with a dot (.) placed
somewhere in the right-hand side (possibly
at either end). For example,

[LIST ~ L IST • ',' E L E M E N T]
[E L E M E N T -~ . 'a']

are both items of G1.
We enclose items in square brackets to

distinguish them more clearly from produc-
tions.

Intuit ively, a set of items can be used to
represent a stage in the parsing process; for
example, the item

[A --~ a . f~]

indicates that an input string derivable from
a has just been seen, and, if we next see an
input string derivable from f3, we may be
able to reduce by the production A --* aft.

Suppose the portion of the input tha t we
have seen to this point has been reduced to
the viable prefix "ya. Then the i tem [A --*
a . ~] is said to be valid for ~a if ~A is also a
viable prefix. In general, more than one i tem
is valid for a given viable prefix; the set of
all items which are valid at a particular

* Some a u t h o r s have used the t e r m "conf igura-
t i o n " for i tem.

Computing Surveys, Vol 6, No 2, June 1974

110 • A. V. Aho and S. C. Johnson

stage of the parse corresponds to the current
s tate of the parser.

As an example, let us examine the viable
prefix

L IST ' , '

in G1. The i tem

[LIST --~ L IST ' , ' . E L E M E N T]

is valid for this prefix, since, setting ~, to the
empty string and a to L IST ' , ' m the defini-
tion above, we see that ~ L IST (which is
lust LIST) is a viable prefix. In other words,
when this i tem is valid, we have seen a por-
tion of the input tha t can be reduced to the
viable prefix, and we expect to see next a
portion of the input tha t can be reduced to
E L E M E N T .

The i tem

[LIST --* . E L E M E N T]

is not valid for L I S T ' , ' however, since
setting ~/ to L I S T ' , ' and a to the empty
string we obtain

L IST ' , ' L IST

which is not a viable prefix.
The reader can (and should) verify tha t

the state corresponding to the viable prefix
L IST ' , ' is associated with the set of items:

[LIST -~ L IST ' , ' . E L E M E N T]
[E L E M E N T --* . 'a']
[E L E M E N T -~ . 'b']

I f ~, is a viable prefix, we shall use V('~) to
denote the set of items that are valid for % I f
~/is not a viable prefix, V(~,) will be empty.
We shall associate a state of the parser with
each set of valid items and construct the
entries in the parsing action for tha t s tate
from the set of items. There is a finite num-
ber of productions, thus only a finite number
of items, and thus a finite number of possi-
ble states associated with every g rammar G.

6.2 Constructing the Collection of Accessible
Sets of Items
We shall now describe a constructive pro-

cedure for generating all of the states and,
at the same time, generating the parsing
action and goto table. As a rumfing ex-

ample, we shall construct parsing action and
goto tables for G1.

First, we augment the g rammar with the
production

A C C E P T --~ L I S T

where in general L IST would be the s tar t
symbol of the g rammar (here G1). A reduc-
tion by this production corresponds to the
accept action by the parser.

Next we construct I0 = V("), the set of
items valid for the viable prefix consisting
of the empty string. By definition, for G1 this
set must contain the item

[ACCEPT --~ . LIST]

The dot in front of the nonterminal L IST
means that, at this point, we can expect to
find as the remaining input any sentence
derivable from LIST. Thus, I0 must also
contain the two items

[LIST --~ . L I S T ' , ' E L E M E N T]
[LIST --~ . E L E M E N T]

obtained from the two productions for the
nonterminal LIST. The second of the items
has a dot in front of the nonterminal ELE-
M E N T , so we should also add to the initial
s tate the items

[E L E M E N T --~ . 'a']
[E L E M E N T -~ . 'b']

corresponding to the two productions for
element. These five items constitute I0.
We shall associate s tate 0 with I0.

Now suppose tha t we have computed
V(~), the set of items which are valid for
some viable prefix % Let X be a terminal or
nonterminal symbol. We compute V(~X)
from V('y) as follows:

(1) For each i tem of the form [A --*
a . X~] in V('y), we add to V('yX)
the i tem [A ~ a X . ~].

(2) We compute the closure of the set of
items in V(~,X); tha t is, for each i tem
of the form [B --~ a . C~] in V(~,X),
where C is a nonterminal symbol, we
add to V(~X) the items

[C ~ . ~1]

[C ~ . an]

Computing Surveys, Vol. 6, No. 2, June 1974

where C -~ ax, . . . , C -~ an are all
the productions ill G with C on the
left side. If one of these items is al-
ready in V('IX) we do not duplicate
this item. We continue to apply this
process until no new items can be
added to V('rX).

I t can be shown that steps (1) and (2)
compute exactly the items tha t are valid for
~,X [Aho and Ullman (1972a)].

For cxample, let us compute 11 =
V(LIST), the set of items tha t are valid for
the viable prefix LIST. We apply the above
construction with ~, = " and X = LIST, and
use the fivc items in I0.

In step (1) of the above construction, we
add the items

[ACCEPT -~ L IST .]

[LIST --~ L I S T . ' , ' E L E M E N T]

to 11. Since no i tem in 11 has a nonterminal
symbol immediately to the right of the dot,
the closure operation adds no new items to
11. The reader should verify tha t these two
items are the only items valid for the viable
prefix. We shall associate state 1 with 11.

Notice that the above construction is com-
pletely independent of ~/; it needs only the
items in V(~), and X. For every set of items
I and every g rammar symbol X the above
construction builds a new set of items which
we shall call GOTO(I , X); this is essentially
the same goto function encountered in the
last two sections. Thus, in our example, we
have computed

GOTO(I0, LIST) = 11

We can extend this GOTO function to
strings of g rammar symbols as follows:

GOTO(I , ") = I

GOTO(I , -rX) = GOTO(GOTO(I , ~), X)

where "r is a string of g rammar symbols and
X is a nontermmal or terminal symbol. If
I = V(a), then I = GOTO(Io, a). Thus
GOTO(I0, a) ~ ~b if and only if a is a viable
prefix, where I0 = V(").

The sets of items which can be obtained
from Io by GOTO's are called the accesszble
sets of ~tems. We build up the set of accessi-

L R Parsing * 111

ble sets of items by computing GOTO(I , X) ,
for all accessible sets of items I and gram-
mar symbols X, whenever the GOTO con-
struction comes up with a new nonempty set
of items, this set of items is added to the set
of accessible sets of items and the process
continues. Since the number of sets of items
is finite, the process eventually terminates.

The order in which the sets of items are
computed does not matter , nor does the
name given to each set of items. We will
name the sets of items I0, 11, 12, . . . in the
order in which we create them. We shall
then associate state i with I , .

Let us return to G1. We have computed
I0, which contained the items

[ACCEPT --~. LIST]
[LIST -~ . L I S T ' , ' E L E M E N T]
[LIST --~ . E L E M E N T]
[E L E M E N T --* . 'a']
[E L E M E N T --* . 'b']

We now wish to compute GOTO(Io, X) for
all g rammar symbols X. We have already
computed

GOTO(Io, LIST) = I1

To determine GOTO(I0, E L E M E N T) , we
look for all items in I0 with a dot immedi-
ately before E L E M E N T . We then take
these items and move the dot to the right of
E L E M E N T . We obtain the single i tem

[LIST --* E L E M E N T .]

The closure operation yields no new items
since this i tem has no nonterminal to the
right of the dot. We call the set with this
i tem I2. Continuing in this fashion we find
that :

GOTO(I0, 'a ') contains only
[E L E M E N T --~ 'a' .]

GOTO(I0, 'b') contains only
[E L E M E N T --~ 'b' .]

and GOTO(I0, ', ') and GOTO(I0, 'S') are
empty. Let us call the two nonempty sets
I3 and I4. We have now computed all sets of
items tha t are directly accessible from I0.

We now compute all sets of items tha t are
accessible from the sets of items just com-
puted. We continue computing accessible
sets of items until no more new sets of items

Comput ing Surveys, Vot 6, No 2, June 1974

112 • A . V . A h o a n d S . C. J o h n s o n

are found. The following table shows the
collection of accessible sets of items for G~:

Io:]ACCEPT --~ . LIST]
[LIST --*. LIST ', ' E L E M E N T]
[LIST --~ . E L E M E N T]
[E L E M E N T --~ . 'a']
[E L E M E N T --~ . 'b']

Ix: [ACCEPT --~ LIST .]
[LIST --~ L I S T . ' , ' E L E M E N T]

12: [LIST --~ E L E M E N T .]

13 : [E L E M E N T -~ 'a ' .1

I4: [E L E M E N T --* 'b' .]

15: [LIST --~ LIST ' , ' . E L E M E N T]
[E L E M E N T -~ . 'a']
[E L E M E N T --* . 'b']

I6: [LIST --~ LIST ', ' E L E M E N T .]

The GOTO function on this collection can
be portrayed as a directed graph in which
the nodes are labeled by the sets of items
and the edges by grammar symbols, as fol-
lows:

ELEMENT ~@

k ,Q~ Q

'b' i

ELEMENT @

Here, we used i in place of I,.
For example, we observe

GOTO(0, ") = 0
GOTO(0, LIST ', ') = 5
GOTO(0, LIST ', ' E L E M E N T) = 6

Observe that there is a path from vertex 0
to a given node if and only if that path spells
out a viable prefix. Thus, GOTO(0, 'ab') is
empty, since 'ab' is not a viable prefix.

Comput ing Surveys, Vol. 6, No 2, June 1974

6.3 Constructing the Parsing Action and Goto
Tables from the Collection of Sets of Items
The parsing action table is constructed

from the collection of accessible sets of items.
From the items in each set of items I , we
generate parsing actions. An item of the
form

[A --* a . 'a ' El

in I , generates the parsing action

i f (input = 'a ') sh i f t t

where GOTO(I, , 'a ') = I t .
An item with the dot at the right end of

the production is called a comple t ed i t em . A
completed item [A -~ a .] indicates tha t we
may reduce by production A --~ a. However,
with an LR(1) parser we must determine
on what input symbols this reduction is

' ' ' a ' possible. If 'a l ' , a2 , " . , ,, are these
symbols and 'a l ' , a2 , • • • , an are not asso-
ciated with shift or accept actions, then we
would generate the sequence of parsing ac-
tions:

if(input = ' a l ') r e d u c e by : A --+
if(input = 'a2') r e d u c e by : A --*

if(input = 'an') reduce by: A --~

As we mentioned in the last section, if the
set of items contains only one completed
item, we can replace this sequence of parsing
actions by the default reduce action

reduce by: A ~

This parsing action is placed after all shift
and accept actions generated by this set of
items.

If a set of items contains more than one
completed item, then we must generate
conditional reduce actions for all completed
items except one. In a while we shall ex-
plain how to compute the set of input sym-
bols on which a given reduction is permissi-
ble.

If a completed item is of the form

[ACCEPT --~ S .]

then we generate the accept action

if(input = '$') accept

where '$' is the right endmarker for the input
string.

Finally, if a set of items generates no re-
duce action, we generate the default error
statement. This statement is placed after
all shift and accept actions generated from
the set of items.

Returning to our example for G1, from
I0 we would generate the parsing actions:

if(input = 'a') sh i f t 3
if(input = 'b') sh i f t 4
e r r o r

Notice that these are exactly the same pars-
ing actions as those for state 0 in the parser
of Section 4. Similarly, I3 generates the ac-
tion

reduce by: E L E M E N T -~ 'a'

The goto table is used to compute the new
state after a reduction. For example, when
the reduction in state 3 is performed we al-
ways have state 0 to the left of 'a'. The new
state is determined by simply noting that

GOTO(I0, E L E M E N T) = I2

This gives rise to the code

if(state = 0) g o t o = 2

for E L E M E N T in the goto table.
In general, if nonterminal A has precisely

the following GOTO's in the GOTO graph:

GOTO(I~, A) = I ,
G O T O (I , , A) = It,

GOTO(I,~, A) = It~

then we would generate the following repre-
sentation for column A of the goto table:

A: i f(state = s l) g o t o = tl
if(state = s2) go to = t~

if(state = s , ,) g o t o = t~

Thus, the goto table is simply a representa-
tion of the GOTO function of the last sec-
tion, applied to the nonterminal symbols.

We must now determine the input sym-
bols on which each reduction is applicable.
This will enable us to detect ambiguities and
difficult-to-parse constructs in the grammar,

L R Pars ing • 113

and to decide between reductions if more
than one is possible in a given state. In
general, this is a complex task; the most
general solution of this problem was given by
[Knuth (1965)], but his algorithm suffers
from large time and memory requirements.
Several simplifications have been proposed,
notably by [DeRemer (1969 and 1971)],
which lack the full generality of Knuth 's
technique, but can construct practical par-
sers in reasonable time for a large class of
languages. We shall describe an algorithm
that is a simplification of Knuth 's algorithm
which resolves all conflicts tha t can be re-
solved when the parser has the states as
given above.

6.4 Computing Lookahead Sets
Suppose [A -~ = . B] is an i tem that is

valid for some viable prefix ~a. We say that
input symbol 'a' is applicable for [A ---* ~ • ~]
if, for some string of terminals 'w', both
"y=~'aw' and ~,A'aw' are right sentential
forms. The right endmarker '$' is applicable
for [A ---* = . ~] if both ~,=B and ~A are
right sentential forms.

This definition has a simple intuitive ex-
planation when we consider completed items.
Suppose input symbol 'a' is applicable for
completed item [A --* ~ .]. If an LR(1)
parser makes the reduction specified by this
item on the applicable input symbol 'a',
then the parser will be able to make at least
one more shift move without encountering
an error.

The set of symbols that are applicable for
each item will be called the lookahead set
for that item. From now on we shall in-
clude the lookahead set as part of an item.
The production with the dot somewhere in
the right side will be called the core of the
item. For example,

([E L E M E N T -o 'a' .], {',', '$'})

is an item of G1 with core

[E L E M E N T --* 'a' .]

and lookahead set {',', '$'}.
We shall now describe an algorithm that

will compute the sets of valid items for a
grammar where the items include their

Computing Surveys, Vol 6, No. 2, June 1974

114 • A . V. Aho and S. C. Johnson

lookahead sets. Recall tha t in the last sec-
tion items in a set of items arose in two ways:
by goto calculations, and then by the closure
operation. The first type of calculation is
very simple; if we have an i tem of the form

([A --~ a . X/3], L)

where X is a g rammar symbol and L is a
lookahead set, then when we perform the
goto operation on X on this item, we obtain
the i tem

([A --* a X . [3], L)

(i.e., the lookahead set is unchanged).
I t is somewhat harder to compute the

lookahead sets in .the closure operation.
Suppose there is an i tem of the form

([A --~ a . BE], L)

in a set of items, where B is a nonterminal
symbol. We must add items of the form

([B - -~ . ~], L')

where B --* ~ is some production in the
grammar. The new lookahead set L ' will
contain all terminal symbols which are the
first symbol of some sentence derivable from
any string of the form /3 'a ' , where 'a ' is a
symbol in L.

If, in the course of carrying out this con-
struction, a set of items is seen to contain
items with the same core; e.g.,

([A --. a . /3] , L,)

and ([A --* a . ~], L2)

then these items are merged to create a sin-
gle i tem; e.g., ([A --~ a . ~], L1 U L2).

We shall now describe the algorithm for
constructing the collection of sets of items
in more detail by constructing the valid sets
of items for g rammar G1. Initially, we con-
struct Io by start ing with the single i tem

([A C C E P T - - * . LIST], {'$'})

We then compute the closure of this set of
items. The two productions for L I S T give
rise to the two items

([LIST - -* . L I S T ' , ' E L E M E N T] , {'$'})

and ([LIST ~ . E L E M E N T] , {'$'1)

The first of these two items gives rise,

through the closure operation, to two addi-
tional items

([LIST - -* . L IST ' , ' E L E M E N T] , { ' , ' I)

and ([LIST--* . E L E M E N T] , [' , '})

since the first terminal symbol of any string
derivable from

',' E L E M E N T '$'

is always ', ' . Since all i tems with the same
core are merged into a single i tem with the
same core and the union of the lookahead
sets, we currently have the following items
in I0:

([A C C E P T - ~ . LIST], {'$'})
([LIST --~. L I S T ' , ' E L E M E N T] , {',', '$ '})
([L I S T - - ~ . E L E M E N T] , {',', '$ '])

The first two of these items no longer give
rise to any new items when the closure
operation is applied. The third i tem gives
rise to the two new items:

([E L E M E N T --~. 'a'], {',', '$'})
([E L E M E N T --~. 'b'], {',', '$'})

and these five items make up I0.
We shall now compute

I2 = GOTO(I0, 'a').
First we add the i tem

([E L E M E N T --* 'a' .], {',', '$'1)

to I2, since 'a' appears to the right of the
dot of onc i tem in I9. The closure operation
adds no new items to 12.

I2 contains a completed item. The look-
ahead set / ' , ' , '$'} tells us on which input
symbols the reduction is applicable.

The reader should verify tha t the com-
plete collection of sets of items for G1 is:

10:]ACCEPT --* . LIST[, {'$'}
[LIST --. . LIST ', ' ELEMENT], [',', '$'J
[LIST--* ELEMENT], {',', '$']
[ELEMENT -~ . 'a'], {',', '$'}
[ELEMENT --* 'b'], [', ', '$'}

I~' [ACCEPT ~ LIST], {'$'}
[LIST ~ LIST . ', ' ELEMENT], I ' , ' , '$'}

I~: [LIST -~ ELEMENT .], {',', '$'}

Is: [ELEMENT -o 'a' .], {',', '$'}

Comput ing Surveys, Vol 6, No 2, June 1974

I4: [E L E M E N T ~ 'b' .], { ' , ' , '$ '}

15: [LIST --~ LIST ',' . ELEMENT], {',', '$'}
[ELEMENT ~ 'a'], ', ', '$'}
[ELEMENT ~ . 'b'], ',', '$'}

16" [LIST ~ LIST ', ' ELEMENT .], ',', '$'}

Although the situation does not occur
here, if we generate a set of items I t such tha t
I t has the same set of cores as some other
set of items I , already generated, but I ,
It, then we combine I8 and I t into a new set
of items I by merging the lookahead sets of
items with the same cores. We must then
compute GOTO(I , X) for all g rammar sym-
bols X.

The lookahead sets on the completed
items give the terminal symbols for which
the reductions should be performed. There
is a possibility tha t there are ambiguities in
the grammar, or the g rammar is too complex
to allow a parser to be constructed by this
technique; this causes conflicts to be dis-
covered in the actions of the parser. For ex-
ample, suppose there is a set of items I~ in
which 'a' gives rise to the parsing action
shift because GOTO(Is, 'a') exists. Suppose
also that there is a completed i tem

([A --. a .], L)

in I, , and tha t the terminal symbol 'a ' is in
the lookahead set L. Then we have no way
of knowing which action is correct in state s
when we see an 'a ' ; we may shift 'a ' , or we
may reduce by A --~ a. Our only recourse is
to report a shift-reduce conflict.

In the same way, if there are two reduc-
tions possible in a state because two com-
pleted items contain the same terminal sym-
bol in their lookahead sets, then we cannot
tell which reduction we should do; we must
report a reduce-reduce conflict.

Instead of reporting a conflict we may
a t t empt to proceed by carrying out all con-
flicting parsing actions, either by parallel
simulation [Earley (1970)] or by backtrack-
ing [Pager (1972b)].

A set of items is consistent or adequate if it
does not generate any shift-reduce or reduce-
reduce conflicts. A collection of sets of items
is vahd if all its sets of items are consistent;
our collection of sets of items for G1 is valid.

We summarize the parsing action and goto

LR Parsing • 115

table construction process:
(1) Given a g rammar G, augment the

g rammar with a new initial produc-
tion

A C C E P T ~ S

where S is the s tar t symbol of G.
(2) Let I be the set with the one i tem

([ACCEPT --~. S], {'$'})

(3)

(4)

Let I0 be the closure of I.
Let C, the current collection of ac-
cessible sets of items, initially contain
only I0.
For each I in C, and for each g rammar
symbol X, compute I ' = GOTO(I ,X) .
Three cases can occur:
a. I ' = I " for some I " already in C.

In this case, do nothing.
b. I f the set of cores of I ' is distinct

from the set of cores of a set of
items already in C, then add I ' to C.

c. I f the set of cores of I ~ is the same
as the set of cores of some I " al-
ready in A but I ' ~ I " , then let
I " be the set of items

([A -~ a . /~] , L1 (J L2)

such tha t

([A --* a . f~], 51) is in I ' and
([A --~ a . ~], L~) is in I " .

Replace I" by I " in C.
(5) Repeat step 4 until no new sets of

items can be added to C. C is called
the LALR(1) collection of sets of items
for G.

(6) From C t ry to construct the parsing
action and goto tables as in Section
6.3.

I f this technique succeeds in producing a
collection of sets of items for a given gram-
mar in which all sets of items are consistent,
then tha t g rammar is said to be an LALR(1)
grammar. LALR(1) grammars include many
important classes of grammars, including
the LL(1) grammars [Lewis and Stearns
(1968)], the simple mixed s t rategy prece-
dence grammars [McKeeman, Horning, and
Wor tman (1970)], and those parsable by
operator precedence techniques. Techniques

Computing Surveys, Vol 6, No. 2, June 1974

116 • A. V. Aho and S. C. Johnson

for proving these inclusions can be found in
[Aho and Ullman (1972a and 1973a)].

Step (4) can be rather time-consuming to
implement. A simpler, but less general,
approach would be to proceed as follows. Let
FOLLOW(A) be the set of terminal symbols
that can follow nonterminal symbol A in a
sentential form. If A can be the rightmost
symbol of a sentential form, then '$' is in-
cluded in FOLLOW(A). We can compute the
sets of items without lookaheads as in Section
6.2. Then in each completed item [A --~ a .]
we can approximate the lookahead set L for
this item by FOLLOW(A) (In general, L is
a subset of FOLLOW(A).) The resulting
collection of sets of items is called the
SLR(1) collection. If all sets of items in the
SLR(1) collection are consistent, then the
grammar is said to be simple LR(1) [De-
Remer (1971)]. Although not every LALR(1)
grammar is simple LR(1), every language
generated by an LALR(1) grammar is also
generated by a simple LR(1) grammar
([Aho and Ullman (1973a)] contains more
details).

7. PARSING AMBIGUOUS GRAMMARS

I t is undesirable to have undetected ambigui-
ties in the definition of a programming
language. However, an ambiguous grammar
can often be used to specify certain language
constructs more easily than an equivalent
unambiguous grammar. We shall also see
that we can construct more efficient parsers
directly from certain ambiguous grammars
than from equivalent unambiguous gram-
mars.

If we a t tempt to construct a parser for
an ambiguous grammar, the LALR(1)
parser construction technique will generate
at least one inconsistent set of items. Thus,
the parser generation technique can be used
to determine that a grammar is unambigu-
ous. Tha t is to say, if no inconsistent sets of
items are generated, the grammar is guaran-
teed to be unambiguous. However, if an
inconsistent set of items is produced, then
all we can conclude is that the grammar is
not LALR(1). The grammar may or may
not be ambiguous. (There is no general

algorithm to determine if a context-free
grammar is ambiguous (see, for example
[Aho and Ullman (1972a)]).

Inconsistent sets of items are useful in
pinpointing difficult-to-parse or ambiguous
constructions in a given grammar. For
example, a production of the form

A --~ A A

in any grammar will make that grammar
ambiguous and cause a parsing action con-
flict to arise from sets of items containing
the items with the cores

[A --~ A A .]
[A --~ A . A]

Constructions which are sufficiently com-
plex to require more than one symbol of
lookahead also result in parsing action con-
flicts. For example, the grammar

S --~ A 'a'
A --) 'a' I "

is an LALR(2) but not LALR(1) grammar.
Experience with an LALR(1) parser

generator called YACC at Bell Laboratories
has shown that a few iterations with the
parser generator are usually sufficient to re-
solve the conflicts in an LALR(1) collec-
tion of sets of items for a reasonable pro-
gramming language.

Example 7.1: Consider the following pro-
ductions for " i f- then" and "if-then-else"
statements:

S --~ 'if b then' S
S -~ 'if b then' S 'else' S

If these two productions appear in a gram-
mar, then that grammar will be ambiguous;
the string

'if b then if b then' S 'else' S

can be parsed in two ways as shown:

Computing Surveys, Vol. 6, No 2, June 1974

In most programming languages, the first
phrasing is preferred. Tha t is, each new
'else' is to be associated with the closest
"unelsed" ' then' .

A g rammar using these ambiguous produc-
tions to specify if-then-else s tatements will
be smaller and, we feel, easier to compre-
hend than an equivalent unambiguous
grammar. In addition if a g rammar has only
ambiguities of this type, then we can con-
struct a "Mid LALR(1) parser for the gram-
mar merely by resolving each shift-reduce
conflict in favor of shift [Aho, Johnson, and
Ullman (1973)].

Example 7.2: Consider the ambiguous
grammar*

S ~ 'if b then ' S
S -~ 'if b then ' S 'else' S
S --~ 'a'

in which each else is to be associated with
the last unelsed ' then' . The LALR(1) col-
lection of sets of items for this g rammar is as
follows:

/0: [ACCEPT --, • S], {'$'}
[3 --* . 'if b then' 3], {'3'}
[3 ~ . 'if b then' S 'else' 3], {'$'}
[3 --* 'a'], {'$'}

I1 [A C C E P T --, S .1, {'S'}

I~: IS ~ 'if b t h e n ' . 3[, { 'e lse ' , '$'1
[3 ~ 'if b t h e n ' S 'e lse ' S], [' e l se ' , '$'}
IS ~ 'if b t h e n ' S], [' e l se ' , '$'}
IS ~ . ' if b t h e n ' S 'e lse ' S], [' e l se ' , '$'}
[3 ~ . 'a '] , [' e l se ' , '$'}

In: [S ~ 'a '], { 'else ' , '$ '}

14: [S --* 'if b t h e n ' S .1, [' e l se ' , '$'}
IS ~ ' if b t h e n ' S . ' e lse ' S], { 'else ' , '$'}

* The fol lowing g r a m m a r is an equ iva l en t u n a m -
b iguous g r a m m a r :

S --* ' if b t h e n ' S
S --* 'If b t h e n ' S~ 'e lse ' S
S --* ' a '
$I --* ' if b t h e n ' $1 'e lse ' Sx
SI --* 'a'

L R Parsing • 117

15: [S ~ 'if b t h e n ' S 'e lse ' S], [' e l se ' , '$ '}
IS ~ . 'if b t h e n ' S], { 'else ' , '$'}
[3 ~ . ' if b t h e n ' S 'e lse ' 3], [' e l se ' , '$'}
[3 ~ . 'a '] , {'else ' , '$'}

I s ' [3 ~ ' if b t h e n ' S 'e lse ' S .], { 'else ' , '$'}

I4 contains a shift-reduce conflict. On the
input 'else', I4 says tha t either a shift move
to /5 is permissible, or a reduction by pro-
duction

S --~ 'if b then ' S

is possible. I f we choose to shift, we shall
associate the incoming 'else' with the last
unelsed ' then' . This is evident because the
i tem with the core

IS --~ 'if b then ' S . 'else' S]

in I4 gives rise to the shift action.
The complete parsing action table, with

the conflict resolved, and the goto table con-
structed from this collection of sets of items
are shown below:

Parsvng Action Table

0: i f(input = 'if b then') s h i f t 2
i f(input = 'a') s h i f t 3
error

1: i f (input = $) a c c e p t
error

2: i f(input = 'if b then') s h i f t 2
i f(input = 'a') s h i f t 3
error

3" r e d u c e b y : S --+ 'a'
4: i f (input = 'else') s h i f t 5

r e d u c e by : S --~ 'if b then ' S
5: i f (input = 'if b then ') s h i f t 2

if(input = 'a ') s h i f t 3
error

6: r e d u c e by : S --~ 'if b then ' S 'else' S

Goto Table

S: i f (s ta te = 0) g o t o = 1
i f (s ta te = 2) g o t o = 4
g o t o = 6

Given an ambiguous grammar, with the
appropriate rules for resolving the ambigui-
ties we can often directly produce a smaller
parser from the ambiguous g rammar than
from the equivalent unambiguous grammar .

Computing Surveys, Vol 6, No 2, June 1974

118 • A . V. Aho and S. C. Johnson

However, some of the "optimizations" dis-
cussed in the next section will make the par-
ser for the unambiguous grammar as small
as that for the ambiguous grammar.

Example 7.3 : Consider the following gram-
mar G3 for arithmetic expressions:

E - ~ E ' + ' E
E - ~ E ' , ' E
E --* ' ('E ') '
E --~ 'a'

where 'a' stands for any identifier. Assuming
that + and • are both left associative and
• has higher precedence than + , there are
two things wrong with this grammar. First,
it is ambiguous in that the operands of the
binary operators ' + ' and ' . ' can be associ-
ated in any arbitrary way. For example,
'a + a -4- a' can be parsed as

or as

The first parsing gives the usual left-to-right
associativity, the second a right-to-left
associativity.

If we rewrote the grammar as G4:

E---~ E ' A - ' T
E---~ E ' . ' T
E - - - ~ T
T ~ ' ('E ') '
T ~ 'a'

then we would have eliminated this am-
biguity by imposing the normal left-to-right
associativity for + and .. However, this
new grammar has still one more defect; +
and • have the same precedence, so that an
expression of the form ' a + a , a ' would be
evaluated as (a + a) . a . To eliminate this,
we must further rewrite the grammar as
as:

E -) E ' + ' T
E - ~ T
T --~ T '*' F
T - ") F
F -- ' ('E ') '
F ---) 'a'

We can now construct ~ parser for G5
quite easily, and find that we have 12 states;
if we count the number of parsing actions in
the parser (i.e., the sum of the number of
shift and reduce actions in all states to-
gether with the goto actions) we see that the
parser for G5 has 35 actions.

In contrast, the parser for G3 has only 10
states, and 29 actions. A considerable part
of the saving comes from the elimination of
the nonterminals T and F from Gs, as well as
the elimination of the productions E --~ T
and T -* F.

Let us discuss the resolution of parsing
action conflicts in G3 in somewhat more de-
tail. There are two sets of items in the
LALR(1) collection of sets of items for G3
which generate conflicts in their parsing ac-
tions:

[E ---) E . ' + ' El, { '+ ' , ' . ' , ')', '$'}
[E --~ E . ' , ' El, { '+ ' , ' , ' , ') ', '$'}
[E --~ E ' + ' E .], { '+ ' , ' . ' , ') ', '$'}

and [E --* E . ' + ' El, { '+ ' , ' . ' , ')', '$'}
[E -~ E . ' , ' El, { '+ ' , ' . ' , ')', '$'}
[E --* Z ' . ' E .1, { '+ ' , ' . ' , ') ', '$'}

Comput ing Sur~eys, Vol 6, No. 2, June 1974

In both sets of items, shift-reduce conflicts
arise on the two terminal symbols ' + ' and
' . ' . For example, in the first set of items on
an input of ' + ' we may generate either a
reduce action or a shift action. Since we wish
+ to be left associative, we wish to reduce
on this input; a shift would have the effect of
delaying the reduction until more of the
string had been read, and would imply right
associativity. On the input symbol '*', how-
ever, if we did the reduction we would end
up parsing the string ' a + a , a ' as (a + a) , a ;
tha t is, we would not give • higher prece-
dence than + . Thus, it is correct to shift on
this input. Using similar reasoning, we see
tha t it is always correct to generate a re-
duce action from the second set of items; on
the input symbol ' , ' this is a result of the
left associativity of ,, while on the input
symbol ' + ' this reflects the precedence rela-
tion between + and ,.

We conclude this section with an example
of how this reasoning can be applied to our
g rammar G1. We noted earlier tha t the
g rammar G2:

L I S T --* L I S T ' , ' L I S T
L I S T --* 'a '
L IST --* 'b'

is ambiguous, but this ambiguity should no
longer be of concern. Assuming tha t the
language designer wants to t reat ' , ' as a left
associative operator, then we can produce a
parser which is smaller and faster than the
parser for G1 produced in the last section.
The smaller parser looks like:

Pars ing Ac t ion Table

0:

1:

i f (input = 'a') s h i f t 2
i f (input = 'b') s h i f t 3
e r r o r

i f (input = '$') a c c e p t
i f (input = ' , ') s h i f t 4
e r r o r

2: r e d u c e by : L IST -~ 'a'
3: r e d u c e by : L IST --~ 'b'
4: if(input = 'a') s h i f t 2

i f (input = 'b') s h i f t 3
e r r o r

5: r e d u c e by : L I S T --~ L I S T ' , ' L I S T

L R P a r s i n g • 119

Goto Table

LIST: i f (s ta te = 0) g o t o = 1
g o t o = 5

Notice tha t we have only 14 parsing ac-
tions in this parser, compared to the 16
which we had in the earlier parser for G1. In
addition, the derivation trees produced by
this parser are smaller since the nodes cor-
responding to the nonterminal symbol ELE-
M E N T are no longer there. This in turn
means tha t the parser makes fewer actions
when parsing a given input string. Parsing
of ambiguous grammars is d~scussed by
[Aho, Johnson, and Ullman (1973)] in more
detail.

8. OPTIMIZATION OF LR PARSERS

There are a number of ways of reducing the
size and increasing the speed of an LR(1)
parser without affecting its good error-de-
tecting capability. In this section we shall
list a few of many transformations that can
be applied to the parsing action and goto
tables of an LR(1) parser to reduce their
size. The transformations we list are some
simple ones tha t we have found to be effec-
t ive in practice. Many other t ransformations
are possible and a number of these can be
found in the references at the end of this
section.

8.1 Merging Identical States
The simplest and most obvious "optimiza-

t ion" is to merge states with common parsing
actions. For example, the parsing action
table for G1 given in Section 5 contains
identical actions in states 0 and 5. Thus, it is
natural to represent this in the parser as:

0: 5: i f (input = 'a') s h i f t 3
i f (input = 'b') s h i f t 4
e r r o r

Clearly the behavior of the LR(1) parser
using this new parsing action table is the
same as tha t of the LR(1) parser using the
old table.

Computing Surveys, VoL 6, No 2, June 1974

120 • A . V. Aho and S. C. Johnson

8.2 Subsuming States
A slight generalization of the transforma-

tion in Section 8.1 is to eliminate a state
whose parsing actions are a suffix of the
actions of another state. We then label the
beginning of the suffix by the eliminated
state. For example, if we have:

n: i f(input = 'x') s h i f t p
if(input = 'y') s h i f t q
e r r o r

and m: if(input = 'y') sh i f t q
e r r o r

then we may eliminate state m by adding the
label into the middle of state n:

n: i f(input = 'x ') sh i f t p
m: if(input = 'y ') s h i f t q

e r r o r

Permuting the order of these statements
can increase the applicability of this op-
timization. (See Ichbiah and Morse (1970)
for suggestions on the implementation of this
optimization.)

8.3 Elimination of Reductions by Single
Productions
A single production is one of the form

A -* X, where A is a nonterminal and X is
a grammar symbol. If this production is not
of any importance in the translation, then
we say that the single production is se-
mantically mszgn~ficant. A common situa-
tion in which single productions arise occurs
when a grammar is used to describe the
precedence levels and associativities of
operators (see grammar G5 of Example 7.3).
We can always cause an LR parser to avoid
making these reductions; by doing so we
make the LR parser faster, and reduce the
number of states. (With some grammars, the
size of the "optimized" form of the parsing
action table may be greater than the un-
optimized one.)

We shall give an example in terms of G1
which contains the single production

LIST --~ E L E M E N T

We shall eliminate reductions by this pro-
duction from the parser for G, found in Sec-

tion 5. The only state which calls for a re-
duction by this production is state 2. More-
over, the only way in which we can get to
state 2 is by the goto action

E L E M E N T : if(state = 0) go to = 2

After the parser does the reduction in state
2, it immediately refers to the goto action

LIST: go to = 1

at which time the current state becomes 1.
Thus, the rightmost tree is only labeled with
state 2 for a short period of time; state 2
represents only a step on the way to state I.
We may eliminate this reduction by the sin-
gle production by changing the goto action
under E L E M E N T to:

E L E M E N T : if(state = 0) go to -- 1

so that we bypass state 2 and go directly to
state 1. We now find that state 2 can never
be reached by any parsing action, so it can
be eliminated. Moreover, it turns out here
(and frequently in practice as well) that the
goto actions for LIST and E L E M E N T be-
come compatible at this point; tha t is, the
actions do not differ on the same state. I t is
always possible to merge compatible goto
actions for nonterminals; the resulting parser
has one less state, and one less goto action.

Example 8.1: The following is a representa-
tion of the parsing action and goto tables for
an LR(1) parser for G1. I t results from the
parsing action and goto tables in Section 5
by applying state merger (Section 8.1), and
eliminating the reduction by the single pro-
duction.

Parsing Act ion Table

0. 5. i f (i n p u t = ' a ') s h i f t 3
i f (i n p u t = 'b ') s h i f t 4
error

1: i f (i n p u t = ' , ') s h i f t 5
i f (i n p u t = $) a c c e p t
error

3" r e d u c e by: E L E M E N T --* 'a'
4 r e d u c e b y : E L E M E N T --~ 'b '
6" r e duc e by: L I S T -~ L I S T ' , ' E L E M E N T

Goto Table

LIST: E L E M E N T : if(state = 0) go to = 1
g o t o = 6

Computing Surveys, Vol. 6, No. 2, June 1974

These tables are identical with those for
the ambiguous version of G1, after the equal
states have been identified. These tables
differ only in that the nonterminal symbols
LIST and E L E M E N T have been explicitly
merged in the ambiguous grammar, while
the distinction is still nominally made in the
tables above.

In the general case, there may be a number
of states which call for reductions by the
same single production, and there may be
other parsing actions in the states which call
for these reductions. I t is not always possi-
ble, in general, to perform these modifica-
tions without increasing the number of
states; conditions which must be satisfied in
order to profitably carry out this process
are given in [Aho and Ullman (1973b)]. I t
is enough for our purposes to notice that if
a reduction by a single production A --* X
is to be eliminated, and if this reduction is
generated by exactly one set of items con-
taining the item with the core

[A ~ X .]

then this single production can be eliminated.
I t turns out that the single productions
which arise in the representation of operator
precedence or associativity can always be
eliminated; the result is typically the same
as if an ambiguous grammar were written,
and the conflicts resolved as discussed in
Section 6. However, the ambiguous grammar
generates the reduced parser immediately,
without needing this optimizing algorithm
[Aho, Johnson, and Ullman (1973)].

Other approaches to optimization of LR
parsers are discussed by [Aho and Ullman
(1972b)], [Anderson (1972)], [Jolliat (1973)],
and [Pager (1970)]. [Anderson, Eve, and
Horning (1973)], [Demers (1973)], and
[Pager (1974)] also discuss the elimination of
reductions by single productions.

9. ERROR RECOVERY

A properly designed LR parser will an-
nounce that an error has occurred as soon
as there is no way to make a valid continua-
tion to the input already scanned. Un-
fortunately, it is not always easy to decide

L R P a r s i n g • 121

what the parser should do when an error is
detected; in general, this depends on the
environment in which the parser is operating.
Any scheme for error recovery must be
carefully interfaced with the lexical analysis
and code generation phases of compilation,
since these operations typically have "side
effects" which must be undone before the
error can be considered corrected. In addi-
tion, a compiler should recover gracefully
from each error encountered so that subse-
quent errors can also be detected.

LR parsers can accommodate a wide
variety of error recovery stratagems. In
place of each error entry in each state, we
may insert an error correction routine which
is prepared to take some extraordinary ac-
tions to correct the error. The description of
the state as given by the set of items fre-
quently provides enough context information
to allow for the construction of sophisticated
error recovery routines.

We shall illustrate one simple method by
which error recovery can be introduced into
the parsing process. This method is only one
of many possible techniques. We introduce
error recovery productions of the form

A - -) e r r o r

into the grammar for certain selected non-
terminals. Here, e r ro r is a special terminal
symbol. These error recovery productions
will introduce items with cores of the form

[A - o . e r r o r]

into certain states, as well as introducing
new states of the form

[A - ~ e r r o r .]

When the LR parser encounters an error, it
can announce error and replace the current
input symbol by the special terminal symbol
e r r o r . The parser can then discard trees
from the parse forest, one at a time from
right-to-left, until the current state (the
state on the rightmost tree in the parse
forest) has a parsing action shift on the in-
put e r r o r . The parser has now reached a
state with at least one item of the form

[A --* . e r r o r]

The parser can then perform the shift

Computing Surveys, Vol. 6, No 2, June 1974

122 • A . V . A h o a n d S . C. J o h n s o n

action and reduce by one of the error re-
covery productions

A --+ e r r o r

(If more than one error recovery production
is present, a choice would have to be speci-
fied.) On reducing, the parser can perform a
hand-tailored action associated with this
error situation. One such action could be to
skip forward on the input until an input
symbol ' a ' was found such tha t ' a ' can
legitimately occur either as the last symbol
of a string generated by A or as the first
symbol of a string tha t can follow A.

Certain automatic error recovery actions
are also possible. For example, the error re-
covery productions Call be mechanically
generated for any specified set of nontermi-
nals. Parsing and error recovery can proceed
as above, except tha t on reducing by an error
recovery production, the parser can auto-
matically discard input symbols until it finds
an input symbol, say 'a ' , on which it can
make a legitimate parsing action, at which
t ime normal parsing resumes. This would
correspond to assuming tha t an error was
encountered while the parser was looking for
a phrase tha t could be reduced to nontermi-
nal A. The parser would then assume tha t
by skipping forward on the input to the
symbol ' a ' it would have found an instance
of nonterminal A.

Certain error recovery schemes can pro-
duce an avalanche of error messages. To
avoid a succession of error messages stem-
ming from an inappropriate recovery, a
parser might suppress the announcement of
subsequent errors until a certain number of
successful shift actions have occurred.

We feel that , at present, there is no effi-
cient general "solution" to the error re-
covery problem in compiling. We see faults
with any uniform approach, including the
one above. Moreover, the success of any
given approach can vary considerably from
application to application. We feel tha t if a
language is cleanly designed and well hu-
man-engineered, automat ic error recovery
will be easier as well.

Part icular methods of error recovery dur-
ing parsing are discussed by [Aho and Peter-
son (1972)], [Graham and Rhodes (1973)],

[James (1972)], [Leinius (1970)], [McGruther
(1972)], [Peterson (1972)], and [Wirth
(1968)].

10. OUTPUT

In compiling, we are not interested in pars-
ing but ra ther in producing a translation for
the source program. LR parsing is eminently
suitable for producing bot tom-up transla-
tions.

Any translation which can be expressed
as the concatenation of outputs which are
associated with each production can be
readily produced by an LR parser, without
having to construct the forest representing
the derivation tree. For example, we can
specify a translation of arithmetic expressions
from infix notat ion to postfix Polish notat ion
in this way. To implement this class of trans-
lations, when we reduce, we perform an
output action associated with tha t produc-
tion. For example, to produce postfix Polish
from G1, we can use the following transla-
tion scheme:

Productwn Translatwn

(1) E---* E ' + ' E ' + '
(2) E - + E '*' E '*'
(3) E -~ ' ('E ') '
(4) E --, 'a' 'a'

Here, as in Section 7, we assume tha t q-
and • are left associative, and tha t • has
higher precedence than + . The translation
element is the output string to be emit ted
when the associated reduction is done. Thus,
if the input string

'a -t- a * (a "-k a) '

is parsed, the output will be

' a a a a + • -}-'

These parsers can also produce three ad-
dress code or the parse tree as output with
the same ease. However, more complex
translations may require more elaborate
intermediate storage. Mechanisms for im-
plementing these translations are discussed
in [Aho and Ullman (1973a)] and in [Lewis,
Rosenkrantz, and Stearns (1973)]. I t is our
current belief that, if a complicated trans-
lation is called for, the best way of imple-

Computing Surveys, Vol. 6, No. 2, June 1974

menting it is by constructing a tree. Optimiz-
ing transformations can then massage this
tree before final code generation takes place.
This scheme is simple and has low overhead
when the input is in error.

11. CONCLUDING REMARKS

LR parsers belong to the class of shift-reduce
parsing algorithms [Aho, Denning, and Ull-
man (1972)]. These are parsers that operate
by scanning their input from left-to-right,
shifting input symbols onto a pushdown
stack until the handle of the current right
sentential form is on top of the stack; the
handle is then reduced. This process is con-
tinued either until all of the input has been
scanned and the stack contains only the
start symbol, or until an error has been en-
countered.

During the 1960s a number of shift-reduce
parsing algorithms were found for various
subclasses of the context-free grammars. The
operator precedence grammars]Floyd
(1963]), the simple precedence grammars
[Wirth and Weber (1966)], the simple mixed
strategy precedence grammars [McKeeman,
Horning, and Wortman (1970)], and the
uniquely invertible weak precedence gram-
mars [Ichbiah and Morse (1970)] are some of
these subclasses. The definitions of these
classes of grammars and the associated
parsing algorithms are discussed in detail in
[Aho and Ullman (1972a)].

In 1965 Knuth defined a class of gram-
mars which he called the LR(k) grammars.
These are the context-free grammars that
one can naturally parse bottom-up using a
deterministic pushdown automaton with
k-symbol lookahead to determine shift-
reduce parsing actions. This class of gram-
mars includes all of the other shift-reduce
parsable grammars and admits of a parsing
procedure that appears to be at least as effi-
cient as the shift-reduce parsing algorithms
given for these other classes of grammars.
[Lalonde, Lee, and Homing (1971)] and
]Anderson, Eve, and Horning (1973)] pro-
vide some empirical comparisons between
LR and precedence parsing that support
this conclusion.

L R P a r s i n g • 123

In his paper Knuth outlined a method for
constructing an LR parser for an LR gram-
mar. However this algorithm results in
parsers that are too large for practical use.
A few years later [Korenjak (1969)] and par-
ticularly [DeRemer (1969 and 1971)] suc-
ceeded in substantially modifying Knuth's
original parser constructing procedure to
produce parsers of practical size. Substan-
tial progress has been made since in improv-
ing the size and performance of LR parsers.

The general theory of LR(k) grammars
and languages is developed in [Aho and Ull-
man (1972a and 1973a)]. Proofs of the cor-
rectness and efficacy of many of the con-
structions in this paper can be found there.

Perhaps the biggest advantage of LR
parsing is that small, fast parsers can be
mechanically generated for a large class of
context-free grammars, that includes all
other classes of grammars for which non-
backtracking parsing algorithms can be
mechanically generated. In addition, LR
parsers are capable of detecting syntax errors
at the earliest opportunity in a left-to-right
scan of an input string, a property not en-
joyed by many other parsing algorithms.

Just as we can parse by constructing a
derivation tree for an input string bottom-up
(from the leaves to the root) we can also
parse top-down by constructing the deriva-
tion tree from the root to the leaves. A
proper subclass of the LR grammars can
be parsed deterministically top-down. These
are the class of LL grammars, first studied
by [Lewis and Stearns (1968)]. LL parsers
are also efficient and have good error-de-
tecting capabilities. In addition, an LL par-
ser requires less initial optimization to be of
practical size. However, the most serious
disadvantage of LL techniques is that LL
grammars tend to be unnatural and awk-
ward to construct. Moreover, there are LR
languages which do not possess any LL
grammar.

These considerations, together with prac-
tical experience with an automatic parser
generating system based on the principles
expounded in this paper, lead us to believe
that LR parsing is an important, practical
tool for compiler design.

Computing Surveys, Vot 6, No. 2, June 1974

124 • A . V. Aho and S. C. Johnson

REFERENCES

AHO, A V., DENNING, P. J , AND ULLMAN, J D.
"Weak and mixed strategy precedence par-
sing." J. ACM 19, 2 (1972), 225-243.

AHO, A V., JOHNSON, S C., AND ULLMAN, J. D.
"Deterministic parsing of ambiguous gram-
mars." Conference Record of ACM Symposium
on Principles of Programming Languages (Oct.
1973), 1-21.

AHO, A. V , AND PETERSON, T G "A minimum
distance error-correcting parser for context-
free languages." SIAM J. Computing 1, 4
(1972) 305-312

AHO, A. V., AND ULLMAN, J D. The Theory of
Pars,rig, Translatwn and Comp~hng, Vol. 1,
Parsing. Prentice-Hall, Englewood Cliffs,
N . J , 1972a.

AHO, A. V., AND ULLMAN, J. D. "Optimization of
LR(k) parsers." J. Computer and System
Sciences 6, 6 (1972b), 573-602.

AHO, A. V, AND ULLMAN, J D The Theory of
Parsing, Translatwn, and Compiling, Vol 2,
Compzhng. Prentice-Hall, Englewood Chffs,
N J , 1973a

Ano, A. V, AND ULLMAN, J. D. "A techmque for
speeding up LR(k) parsers " SIAM J. Com-
puting 2, 2 (1973b), 106-127.

ANDERSON, T. Syntactic analys~s of LR(k) lan-
guages. PhD Thesis, Unlv Newcastle-upon-
Tyne, Northumberland, England (1972)

ANDERSON, T , EVE, J., AND HORNING, J J.
"Efficmnt LR(1) parsers." Acla Informatica
2 (1973), 12-39.

DEMERS, A. "Ehmination of single productions
and merging nonterminal symbols of LR(1)
grammars " Technical Report TR-127, Com-
puter Science Laboratory, Dept of Electrical
Engineering, Princeton Univ., Princeton, N.J ,
July 1973.

DEREMER, F L. "Practical translators for
LR(k) languages " Project MAC Report MAC
TR-65, MIT, Cambridge, Mass, 1969

DEREMER, F. L. "Simple LR(k) grammars "
Comm. ACM 14, 7 (1971), 453-460

EARLEY, J. "An efl~cmnt context-free parsing
algorithm." Comm ACM 13, 2 (1970), 94-102.

FELDMAN, J. A., AND GRILS, D. "Translator
writing systems " Comm. ACM 11, 2 (1968),
77-113.

FLOYD, R. W. "Syntactic analyms and operator
precedence " J. ACM 10, 3 (1963), 316-333.

GRAHAM, S. L., AND RHODES, S. P "Practical
syntactic error recovery in compilers." Con-
ference Record of ACM Symposium on Pmn-
c~ples of Programmzng Languages (Oct. 1973),
52-58

GRIES, D Compiler Construction for D~g~tal
Computers. Wiley, New York, 1971

ICHBIAI-I, J. D , AND MORSE, S P. "A techmque
for generating almost optimal Floyd-Evans
productions for precedence grammars " Comm.
ACM 13, 8 (1970), 501-508.

JAMES, L R. "A syntax directed error recovery
method." Technical Report CSRC,-13, Com-

purer Systems Research Group, Univ To-
ronto, Toronto, Canada, 1972.

JOLLIAT, M L. "On the reduced matrix repre-
sentation of LR(k) parser tables " PhD.
Thesis, Univ. Toronto, Toronto, Canada
(1973).

KNUTH, D E "On the translation of languages
from left to right " Information and Control 8,
6 (1965), 607-639

KNUTH, D. E "Top down syntax analysm."
Acta Informatzca 1, 2 (1971), 97-110

KORENJAK, A. J. "A practical method of con-
structmg LR(k) processors " Comm. ACM 12,
11 (1969), 613-623

LALONDE, W R., LEE, E S., AND HORNING, J. J
"An LALR(k) parser generator." Proc. IFIP
Congress 71 TA-3, North-Holland Publishing
Co., Amsterdam, the Netherlands (1971), pp.
153-157.

LEINIUS, P "Error detection and recovery for
syntax directed compiler systems " PhD
Thesis, Univ Wisconsin, Madmon, Wisc.
(1970).

LEWIS, P. M , ROSENKRANTZ, D. J , AND STEARNS,
R E "Attributed translations " Proc. Fzfth
Annual ACM Symposzum on Theory of Com-
putzng (1973), 160-171

LEWTS, P M., AND STEARNS, R E. "Syntax
directed transductIon." J. ACM 15, 3 (1968),
464-488.

McGnUTH~R, T. "An approach to automating
syntax error detection, recovery, and correc-
tion for LR(k) grammars." Master's Thesis,
Naval Postgraduate School, Monterey, Calif ,
1972

MCKEEMAN, W. M , HORNING, J J., AND WORT-
MAN, D. B A Compzler Generator. Prentice-
Hall, Englewood Cliffs, N J., 1970.

PAGLR, D. "A solution to an open problem by
Knuth." Informatwn and Control 17 (1970),
462-473.

PAGER, D. "On the incremental approach to left-
to-right parsing " Technical Report PE 238,
Information Sciences Program, Univ. Hawaii,
Honolulu, Hawan, 1972a.

PAGER, D "A fast left-to-right parser for con-
text-free grammars." Technical Report PE
240, Information Sciences Program, Univ.
Hawaii, Honolulu, Hawaii, 1972b

PAGER, D. "On ehmmating unit productions
from LR(k) parsers." Technical Report, In-
formation Sciences Program Univ Hawaii,
Honolulu, Hawai b 1974

PLTERSON, T G. "Syntax error detection, cor-
rectmn and recovery in parsers." PhD Thesis,
Stevens Institute of Technology, Hoboken,
N. J , 1972

WIRTH, N "PL360--a programminglanguage for
the 360 computers." J. ACM 15, 1 (1968),
37-74.

WIRTH, N , AND WEBER, H. "EULER--a generali-
zation of ALGOL and its formal definitmn."
Comm. ACM 9, 1 (1966), 13-23, and 9, 2 (1966),
89-99.

Computing Surveys, Vol. 6, No 2, June 1974

