
MiniJava Syntax

Below we give the concrete syntax of MiniJava. We assume the reader knows
what a context-free grammar is, but this syntax is not given as a pure cfg —
it uses some well-known shortcuts to make it easier to read. (This is called
“extended BNF.”) They work like this:

• Any syntactic item, or parenthesized group of syntactic items, can be
followed by a +, *, or ?. This means:

– If followed by +, that item or group of items can be repeated as many
times as you like, but at least once.

– If followed by *, that item or group of items can be repeated as many
times as you like, including zero.

– If followed by ?, that item or group of items can be either included
(once) or omitted; i.e. it is optional.

• A list of syntactic items or parenthesized group can be separated by verti-
cal bars (|), meaning that exactly one item or group from the list should
be used at that point.

So, for example, the first rule says that a program consists of any number
of class declarations, but at least one. Or, to take a more complicated case,
a switch statement consists of the word “switch” followed by an expression in
parentheses and then an open bracket; then any number (including zero) of
cases, each of which has the word “case”, an integer literal, a colon, and a non-
empty list of statements; then a default case consisting of the word “default”,
a colon, and a non-empty list of statements; and, finally, a closing bracket.

1

Program ::= (ClassDecl)+

ClassDecl ::= "class" <IDENTIFIER> ("extends" <IDENTIFIER>)?

"{" (VarDecl)* (MethodDecl)* "}"
VarDecl ::= Type <IDENTIFIER> ";"

| "static" Type <IDENTIFIER> ";"

MethodDecl ::= "public" Type <IDENTIFIER>
"(" (Type <IDENTIFIER> ("," Type <IDENTIFIER>)*)? ")"

"{" (VarDecl)* (Statement)* "return" Expression ";" "}"
Type ::= Type "[" "]"

| "boolean"

| "String"

| "float"

| "int"

| <IDENTIFIER>
Statement ::= "{" (Statement)* "}"

| "if" "(" Expression ")" Statement "else" Statement

| "if" "(" Expression ")" Statement

| "while" "(" Expression ")" Statement

| "System.out.println" "(" Expression ")" ";"

| <IDENTIFIER> "=" Expression ";"

| "break" ";"

| "continue" ";"

| <IDENTIFIER> "[" Expression "]" "=" Expression ";"

| "switch" "(" Expression ")" "{"
("case" <INTEGER LITERAL> ":" (Statement)+)*

"default" ":" (Statement)+ "}"
Expression ::= Expression ("&" | "|" | "<" | "+" | "-" | "*" | "/") Expression

| Expression "[" Expression "]"

| Expression "." "length"

| Expression "." <IDENTIFIER> "(" (Expression ("," Expression)*)? ")"

| <INTEGER LITERAL>
| <FLOAT LITERAL>
| <STRING LITERAL>
| "null"

| "true"

| "false"

| <IDENTIFIER>
| "this"

| "new" Type "[" Expression "]"

| "new" <IDENTIFIER> "(" ")"

| "!" Expression

| "(" Expression ")"

2

