
Lecture 9: Bottom-up parsing;
ocamlyacc

• Using ocamlyacc

• Bottom-up parsing

• Shift-reduce parsing

• Bottom-up parsing as “handle-pruning”

• Midterm exam 1 next week!

• Time & loc: Wednesday, Feb. 24, 7:30PM, 100 MSEB

• Let us know about conflicts today!

• Will post syllabus for exam, review questions, etc.

• Class on Tuesday, Feb. 23, is optional review session.

– Typeset by FoilTEX –

Using ocamlyacc

• Input grammar is put in file
<grammar>.mly

• Execute ocamlyacc <grammar>.mly

• Produces code for parser in <grammar>.ml and interface
(including type declaration for tokens) in <grammar>.mli

– Typeset by FoilTEX –

Parser code

• <grammar>.ml defines parsing function, with two argu-
ments: a lexing function (lexer buffer to token) and a lexer
buffer

• Each production has an associated semantic attribute —
usually the CST or AST for that node. After the parser
parses that part of the input using this production, it returns
the semantic attribute.

– Typeset by FoilTEX –

Example - expression grammar
In this example, we will take a simple expression grammar and create a parser

to parse inputs and produce abstract syntax.

Grammar :

M → Exp eof
Exp → Term | Term + Exp | Term − Exp
Term → Factor | Factor ∗ Term | Factor / Term
Factor → id | (Exp)

Abstract syntax :

(* File: expr.ml *)
type expr =

Plus of expr * expr
| Minus of expr * expr
| Mult of expr * expr
| Div of expr * expr
| Id of string

– Typeset by FoilTEX –

Example - exprlex.mll
(* File: exprlex.mll *)
let numeric = [’0’ - ’9’]
let letter = [’a’ - ’z’ ’A’ - ’Z’]
rule tokenize = parse
| "+" {Plus_token}
| "-" {Minus_token}
| "*" {Times_token}
| "/" {Divide_token}
| "(" {Left_parenthesis}
| ")" {Right_parenthesis}
| letter (letter | numeric | "_")* as id {Id_token id}
| [’ ’ ’\t’ ’\n’] {tokenize lexbuf}
| eof {EOL}

– Typeset by FoilTEX –

Example - exprparse.mly (part 1)
(* File: exprparse.mly *)
%token <string> Id_token
%token Left_parenthesis Right_parenthesis
%token Times_token Divide_token
%token Plus_token Minus_token
%token EOL
%start main
%type <expr> main
%%

– Typeset by FoilTEX –

Example - exprparse.mly (part 2)
expr:

term {$1}
| term Plus_token expr {Plus($1,$3)}
| term Minus_token expr {Minus($1,$3)}

term
factor {$1}

| factor Times_token term {Mult($1,$3)}
| factor Divide_token term {Div($1,$3)}

factor:
Id_token {Id $1}

| Left_parenthesis expr Right_parenthesis {$2}

main:
| expr EOL {$1}

– Typeset by FoilTEX –

Example - using parser
#use "expr.ml";;
...
#use "exprparse.ml";;
...
#use "exprlex.ml";;
...
let test s =
let lexbuf = Lexing.from string(s^"\n") in

main tokenize lexbuf;;
test "a + b";;
- : expr = Plus(Id "a",Id "b")

– Typeset by FoilTEX –

ocamlyacc Input

• File format:

%{
<header>

%}
<declarations>

%%
<rules>

%%
<trailer>

– Typeset by FoilTEX –

ocamlyacc <header>

• Contains arbitrary Ocaml code

• Typically used to give types and functions needed for the
semantic values of rules and to give specialized error recovery

• May be omitted

• <footer> similar. Possibly used to call parser

– Typeset by FoilTEX –

ocamlyacc <declarations>

• %token symbol ... symbol

Declare given symbols as tokens

• %token <type> symbol ... symbol

Declare given symbols as token constructors, taking an argu-
ment of type type

• %start symbol ... symbol

Declare given symbols as entry points; functions of same
names in <grammar>.ml

• %type <type> symbol ... symbol

Specify type of attributes for given symbols. Mandatory for
start symbol

– Typeset by FoilTEX –

ocamlyacc <declarations>

• %left symbol ... symbol

• %right symbol ... symbol

• %nonassoc symbol ... symbol

Associate precedences and associativities to given symbols.
Same line, same precedence; earlier line, lower precedence
(broadest scope)

– Typeset by FoilTEX –

ocamlyacc <rules>

• nonterminal:
symbol ... symbol { semantic value }
| ...

| symbol ... symbol { semantic value }
;

• Semantic values are arbitrary Ocaml expressions

• Must be of same type as declared (or inferred) for nonter-

minal

• In semantic values, access values of symbols by position: $1
for first symbol, $2 for second, etc.

– Typeset by FoilTEX –

Bottom-up parsing

• Bottom-up parsing

• Bottom-up vs. top-down

• Shift-reduce parsing

• Bottom-up parsing as “handle-pruning”

• Parsing conflicts (will discuss in detail on Thursday)

– Typeset by FoilTEX –

Top-down vs. bottom-up parsing

• Why is top-down called “top-down”?

As we consume tokens, we build a parse tree. At any time,
we are filling in the children of a particular non-terminal. As

soon as we decide what production to use, we can fill in
the tree. In this sense, we are building the tree from the top
down.

• Example: E → id T

T → ε | + E | ∗ E

Input: x + y * z

– Typeset by FoilTEX –

Bottom-up parsing

• Bottom-up parsing works by creating small parse trees and
joining them together into larger ones.

• Example: E → E + T | T
T → T ∗ id | id

Input: x * y + z * w

– Typeset by FoilTEX –

Shift-reduce parsing

• Here’s how bottom-up parsers work:

• Keep a stack of small parse trees. Based on what’s in this
stack, and the next input token, take one of these actions:

• Shift: Move lookahead token to stack

• Reduce A → α: If roots of trees on stack match α,
replace those trees on stack by single tree with root A.

• Accept: When stack consists of just the start symbol,
and look-ahead is eof

• Reject

• Bottom-up parsing is also called shift-reduce parsing.

– Typeset by FoilTEX –

Shift-reduce example 1

• Example: L → L ; E | E
E → id

Input: x; y; z

– Typeset by FoilTEX –

Shift-reduce example 2

• Example: E → E + T | T
T → T ∗ P | P
P → id | int

Input: x + 10 * y

(From now on, we will write down only the roots of the trees
on the stack.)

– Typeset by FoilTEX –

LR(1) parsing

• Shift-reduce parsing is a general mechanism that can produce
any parse tree, as long as the correct shift/reduce decision is
made at every point.

• The big question is: based on the contents of the stack and
the remaining input, what is the correct action?

• LR(1) parsing is a method of analyzing the grammar to
determine how to make this decision. In LR(1) parsing, the
s/r decision is based on the roots of the trees on the stack,
and on one lookahead symbol.

• LR(1) parsers are very efficient in practice.

– Typeset by FoilTEX –

LR(1) parsing (cont.)

• Variants of LR(1) — such as “SLR(1)” and “LALR(1)” —
are used because the required analysis can be done more
efficiently.

• LR(1) is applicable only to grammars where this decision can
be made unambiguously for any stack configuration and input
symbol. This is not always possible.

• Note that in earlier shift/reduce examples, decision could be
made mechanically by simple rules (see below).

• Our next problem is to understand when a grammar is not

LR(1)...

– Typeset by FoilTEX –

Non-LR(1) example
Consider this grammar and two possible inputs:

• A → B , int

B → id | id , B

• Inputs: “x,10” and “x,y,10”

– Typeset by FoilTEX –

Handle-pruning

• Here is one way to think of bottom-up parsing:

• Pretend you already know the parse tree. The shift-reduce
process clips off, or “prunes,” parts of the tree, until nothing
is left. In particular, it prunes the children of one node.

• A group of sibling nodes is eligible for pruning if they are all
childless (either tokens or nonterminals all of whose children
have already been pruned).

• In LR parsing, pruning is always done at the leftmost

eligible group of sibling nodes. This group is called the
handle of the (partially pruned) parse tree.

– Typeset by FoilTEX –

Example 1 of handle-pruning
Grammar: E → E,id | id
Input: x,y,z

– Typeset by FoilTEX –

Example 2 of handle-pruning
Consider this grammar and two possible inputs:

Grammar: A → B , int

B → id | id , B
Input: x,y,10

– Typeset by FoilTEX –

Example 3 of handle-pruning
Grammar: E → E+E | id
Input: x+y+z

– Typeset by FoilTEX –

Handle-pruning and s/r parsing

• The connection between shift-reduce parsing and handle-
pruning is this: The stack contains the frontier of the

pruned tree, up to but never exceeding the handle. The

handle is exactly the symbols on the top of the stack

that are reduced in a reduce action.

• In actual parsing, we don’t have the parse tree, so we can
only guess what it will look like in the end. The big question
for bottom-up parsing is when to shift and when to reduce.
Another way to say this is: how do we know when we’ve

seen the handle - i.e. that the handle is on the stack?

• In example 1 above, this was easy. In examples 2 and 3, it
is not possible.

– Typeset by FoilTEX –

LR(1) example
For this grammar, parsing decisions can always be

made based on the stack and one lookahead symbol:

E → E + T | T
T → T ∗ id | id

– Typeset by FoilTEX –

Thursday’s class

• Big question: how to choose whether to shift or reduce.

• ocamlyacc uses a method — called LALR(1) — to construct
tables which say what action to take.

• There are times when there is no good way to make this
decision. (ocamlyacc will reject grammar and give an error
message.) In bottom-up parsing, these are called conflicts.
There are two types: shift/reduce and reduce/reduce.

• As with top-down parsing, these problems can sometimes be
resolved by modifying the grammar.

• On Thursday, will discuss these conflicts and give some advice
on how to resolve them.

– Typeset by FoilTEX –

MP 5

• MP 5 starts with a grammar embedded in an incomplete
ocamlyacc specification. You will need to finish the spec:

• Remove “extended BNF” productions - ocamlyacc cannot
handle them

• Resolve grammar conflicts

• Fill in actions so as to produce ASTs.

– Typeset by FoilTEX –

