Lecture 8: Recursive-descent parsing

® Recursive-descent formalized

® FIRST sets
e LL(1) condition
e Transformations to LL(1) form

® Grammars for expressions - a difficult case

(Next week: LR(1) parsing, ocamlyacc)

(CS421 - Lecture 8: Parsing, Context-free grammars, Recursive descent (Top-down) parsing 1

Top-down parsing
® For each non-terminal with productions:
A-X|Y)| ...|Z

define parseA:

parsel toklis = choose production based on hd toklis:
if A—X chosen: handle X

else if A—Y chosen: handle }7,
else if etc.

handle X1 X5...X,, : handle X;; handle X5; ...; handle X,

where handle t : if hd toklis =t
then remove t and continue
else error

handle B : parseB toklis

CS421 - Lecture 8: Parsing, Context-free grammars, Recursive descent (Top-down) parsing

“choose production based on hd
toklis”

® Need to formalize some things...

® Define “=": X1...X, = Xq... Xi_laXHl Xy (fOI’ any
1 <i < n) if the grammar has production X; — a.

® — 1 and =* are the transitive and reflexive-transive closures
of =. (Say X derives a if X =* «.)

® « is a sentential form of G if the start symbol of G derives
a. |If, furthermore, o consists solely of tokens, then it is a
sentence. (These notions correspond to being the “frontier”
of a syntax tree; some care is needed in defining “frontier”
to account for e-productions.)

CS421 - Lecture 8: Parsing, Context-free grammars, Recursive descent (Top-down) parsing 3

“choose production based on hd
toklis” (cont.)

® X is nullable if it can derive e.

® Define: FIRST(X) = {t € T|X =* ta for some a} U
{o | X nullable}.

® Define: FOLLOW(A) = {t € T'| 3 a sentential form o At3}

There are well-known algorithms for calculating FIRST and FOLLOW sets,
but we will consider only simple cases where they can be calculated by inspection.

CS421 - Lecture 8: Parsing, Context-free grammars, Recursive descent (Top-down) parsing 4

“choose production based on hd
toklis” (cont.)

® Define: G is left-recursive if 94 : A =T Aa for some «.
® Define: G is LL(1) if

1. G is not left-recursive, and
2. For all non-terminals A, if the productions of A are A —
| ... | ap:

(a) The sets FIRST(ay), ..., FIRST(a,,) are pairwise disjoint.
(Vi,j.i# j= FIRST(co;) N FIRST (ct;) = 0.)

(b) If A is nullable, then suppose «; is the unique right-
hand side such that ¢ € FIRST(«;). Then, for all j # i,
FIRST(a;)N FOLLOW(A) = 0.

(CS421 - Lecture 8: Parsing, Context-free grammars, Recursive descent (Top-down) parsing 5

Top-down parsing revisited
If G is LL(1), then for each non-terminal A with productions
A-X|Y|...|Z
construct parseA:

parseA toklis = let t = hd toklis in
if t € FIRST(X) then handle X
else if t € FIRST(Y) then handle Y
..else if t € FIRST(Z) or (e € FIRST(Z) and t € FOLLOW/(A))

then handle Z (Z the unique nullable right-hand side of A, if any)
else error

handle X7, Xs,...,X,, : handle X;; handle X5; ...; handle X,

handle t : if hd toklis = t
then remove t and continue
else error

handle B : parseB toklis

CS421 - Lecture 8: Parsing, Context-free grammars, Recursive descent (Top-down) parsing 6

Transformation to LL(1)

® Left refactoring:

A—af|ay

= A — aB
B— 3|y

® Left-recursion removal:

A— Aa | B
= A — (B
B —¢| aB

(CS421 - Lecture 8: Parsing, Context-free grammars, Recursive descent (Top-down) parsing

Example

® Consider non-LL(1) grammar 3 from the previous class:

A_)id ’(’B’)’
B-A|A'+'B

® Grammar 3 transformed to LL(1) form:

Aﬁid"(,B,)’
B - AC
C—-"4+4"B]e¢

(CS421 - Lecture 8: Parsing, Context-free grammars, Recursive descent (Top-down) parsing

Ambiguity

® No test for ambiguity

® Recursive descent and LR(1) parsing not applicable to am-
biguous grammar (possible to “cheat” with LR parser - will
see how next week)

(CS421 - Lecture 8: Parsing, Context-free grammars, Recursive descent (Top-down) parsing 9

Expression grammars

® Expressions are challenging for several reasons:

e Grammar should enforce precedence, if possible
e Grammar should enforce associativity, if possible
e Grammar shouldn’t be ambiguous

e Should be easy to construct abstract syntax tree

® Especially hard to write LL(1) parser for expressions. Not so
hard for LR(1).

(CS421 - Lecture 8: Parsing, Context-free grammars, Recursive descent (Top-down) parsing 10

Enforcing precedence

CS421 - Lecture 8: Parsing, Context-free grammars, Recursive descent (Top-down) parsing

11

Enforcing associativity

CS421 - Lecture 8: Parsing, Context-free grammars, Recursive descent (Top-down) parsing

12

Some expression grammars
GaE—id|E-E|E*E

Gp: E—id|id-E|id *E

Ge: E—id|E-id | E *id

GD: E—>T—E’T

T —id|id*T
GE: E%E—T|T

T —id|T*id
Gr: E—TF

E'—e€|-E

T —id T’

T —e|*T

CS421 - Lecture 8: Parsing, Context-free grammars, Recursive descent (Top-down) parsing

13

® G E—id E-E|E*E

ex-y*z X-Yy-2

(CS421 - Lecture 8: Parsing, Context-free grammars, Recursive descent (Top-down) parsing

14

®Gg:E—id|id-E|id*E

ex-y*z X-y¥*¥z-w

ex*y-z

(CS421 - Lecture 8: Parsing, Context-free grammars, Recursive descent (Top-down) parsing

15

® Go: E—id|E-id | E *id

ex-y*z X-y¥*¥z-w

ex*y-z

(CS421 - Lecture 8: Parsing, Context-free grammars, Recursive descent (Top-down) parsing

16

.GD:E—>T-E‘T
T—id|id*T

ex-y*z X *y-z

(CS421 - Lecture 8: Parsing, Context-free grammars, Recursive descent (Top-down) parsing

X-Y-2Z

17

T—id|T*id

ex-y*z Xx*y-z

(CS421 - Lecture 8: Parsing, Context-free grammars, Recursive descent (Top-down) parsing

X-Y-2Z

18

.GFEHTE/
E' - ¢|-E
T—-idT
T —e|*T

ex-y*z Xx*y-z

(CS421 - Lecture 8: Parsing, Context-free grammars, Recursive descent (Top-down) parsing

X-Y-2Z

19

