
2/3/2010

1

CS421 Lecture 6

▶ Today’s class
▶Regular Expressions

▶Ocamllex

▶ These slides are based on slides by Elsa Gunter, Mattox Beckman

Overview of Ocamllex

2/3/2010

2

Regular Expressions

▶ A regular expression is one of
▶ , aka “”

▶ ‘a’ for any character a

▶ r1 r2, where r1 and r2 are regular expr’s

▶ r1 | r2, where r1 and r2 are regular expr’s

▶ r* where r is a reg expr’sr , where r is a reg expr s

▶Ø

Regular Expression Examples

2/3/2010

3

Regular Expression Examples

▶ Keywords

▶ Operators

▶ Id tifi▶ Identifiers

▶ Int literals

Abbreviations

2/3/2010

4

Regular Expression Example

▶ Float-point Literal

Regular Expression Example

▶ New-Style Comments (//)

▶ Old-Style Comments (/* … */)

2/3/2010

5

Implementing Reg Expr

▶ Translate RE’s to NFA’s, then to DFA’s

Lexing with Reg Exprs

▶ Create one large RE:

▶ Then add actions

2/3/2010

6

(cont.)

▶ Ambiguous cases:

▶ Two tokens found, one longer

▶ Two tokens found, the same length

General Input

{ header }
l t id tlet ident = regexp ...
rule entrypoint [arg1... argn] = parse

regexp { action }
| ...
| regexp { action }| regexp { action }

and entrypoint [arg1... argn] = parse ...and ...
{ trailer }

2/3/2010

7

Ocamllex Input

▶header and trailer contain arbitrary
ocaml code put at top an bottom of
<filename>.ml

▶ let ident = regexp ... Introduces ident
for use in later regular expressions

Mechanics

▶ Put table of regular expressions and
di ti (itt i l)corresponding actions (written in ocaml)

into a file
<filename>.mll

▶ Call
ocamllex <filename>.mllocamllex filename .mll

▶ Produces Ocaml code for a lexical
analyzer in file <filename>.ml

2/3/2010

8

Example 1: Get token from start
of input

(* Ex. 1: Return a string giving the type
* of the token at the start of the input *) of the token at the start of the input)

rule main = parse
['0'-'9']+ { "Int" }

| ['0'-'9']+'.'['0'-'9']+ { "Float" }
| ['a'-'z']+ { "String" }

{ let get_token s =
let b = Lexing.from string (s)
in main b }

Example 2: Get token from start of
input, return element of data type

{ type token = Int | Float | Ident }

rule main = parse
['0'-'9']+ { Int }

| ['0'-'9']+'.'['0'-'9']+ { Float }
| ['a'-'z']+ { Ident }

{ let get_token s =
let b = Lexing.from_string (s)
in main b }

2/3/2010

9

Example 3: Get first token in input,
after skipping other characters

{ type token = Int | Float | Ident }

rule main = parse
['0'-'9']+ { Int }

| ['0'-'9']+'.'['0'-'9']+ { Float }
| ['a'-'z']+ { Ident }
| { main lexbuf }| _ { main lexbuf }

{ let get_token s = … same as above … }

Example 4: Get first token, and its value,
after skipping other characters

{ type token = Int of int | Float of float | Ident of
string }string }

rule main = parse
['0'-'9']+ as s { Int (int_of_string s) }

| ['0'-'9']+'.'['0'-'9']+ as s { Float (float_of_string s) }
| ['a'-'z']+ as s { Ident s }| [] { }
| _ { main lexbuf }

{ let get_token s = … same as above … }

2/3/2010

10

Example 5: Get all tokens in input

{ type token = Int of int | Float of float | Ident of
string | EOF }

rule main = parse
['0'-'9']+ as s { Int (int_of_string s) }

| ['0'-'9']+'.'['0'-'9']+ as s { Float (float_of_string s) }
| ['a'-'z']+ as s { Ident s }
| { main lexbuf }| _ { main lexbuf }
| eof { EOF }

{ let get_token s = … same as above …
continued…

Example 5 (cont.): Get all tokens in input

l t t ll t klet get_all_tokens s =
let b = Lexing.from_string (s)
in let rec get_tokens () =

match main b with
EOF -> []

| t -> t :: get tokens ()| t > t :: get_tokens ()
in get_tokens ()

}

2/3/2010

11

Ocamllex Input

▶<filename>.ml contains one lexing
f ti t i tfunction per entrypoint
▶Name of function is name given for

entrypoint
▶Each entry point becomes an Ocaml

function that takes n+1 arguments, the g
extra implicit last argument being of type
Lexing.lexbuf

▶arg1... argn are for use in action

Ocamllex Regular Expression

▶ Single quoted characters for letters: ‘a’
▶ _: (underscore) matches any character

▶ eof: special “end_of_file” marker

▶ Concatenation: concatenation

▶ “string”: concatenation of sequence of
characters

▶ e1 | e2 : choice

2/3/2010

12

Ocamllex Regular Expression

▶ [c1 - c2]: choice of any character
b t fi t d d i l ibetween first and second inclusive, as
determined by character codes

▶ [^c1 - c2]: choice of any character
NOT in set

▶e*: same as before▶e : same as before
▶e+: same as e e*
▶e?: option - was e1 | ε

Ocamllex Regular Expression

▶e1 # e2: the characters in e1 but not in
e2; e1 and e2 must describe just sets
of characters

▶ ident: abbreviation for earlier reg exp
in let ident = regexp

▶ e1 as id: binds the result of e1 to id to
be used in the associated action

2/3/2010

13

Ocamllex Manual

▶ More details can be found at

http://caml.inria.fr/pub/docs/manual-
ocaml/manual026.html

Example 6: example 5 using
abbreviations
{ type token = Int of int | Float of float | Ident of

t i | EOF }string | EOF }
let digit = ['0'-'9']
let digits = digit +
let lower_case = ['a'-'z']
let upper_case = ['A'-'Z']
let letter = upper_case | lower_case
let letters = letter +

continued…

2/3/2010

14

Example 6 (cont.): example 5
using abbreviations
rule main = parse

digits as s { Int (int_of_string s) }
| digits '.' digits as s { Float (float_of_string s) }
| letters as s { Ident s }
| _ { main lexbuf }
| eof { EOF }| { }

C-style comments

let open_comment = “/*"
let close comment = "*/"let close_comment = /
rule main = parse

digits '.' digits as f { Float (float_of_string f) }
| digits as n { Int (int_of_string n) }
| letters as s { Ident s }

continued …

2/3/2010

15

C-style comments (cont.)

| open_comment { comment lexbuf }

| f { EOF }| eof { EOF }

| _ { main lexbuf }

and comment = parse

close_comment { main lexbuf }

| { comment lexbuf }| _ { }

OCaml-style comments

rule main = parse …
| open comment { comment 1 lexbuf}| open_comment { comment 1 lexbuf}
| eof { [] }
| _ { main lexbuf }

and comment depth = parse
open_comment { comment (depth+1) lexbuf }

| close_comment { if depth = 1
then main lexbuf
else comment (depth - 1)

lexbuf }
| _ { comment depth lexbuf }

