
2/1/2010

1

CS421 Lecture 5 – Lexical Analysis

▶ Today’s class
▶ Lexing

▶ Finite-State Machine as Lexer

Compiler Outline

▶ Front-End
▶ Takes Input Source Code

▶Returns Abstract Syntax Tree + symbol table

▶ Back-End
▶ Takes Abstract Syntax Tree + symbol table

▶Returns machine executable binary code or▶Returns machine executable binary code, or
virtual machine code, or just interprets
program

2/1/2010

2

Front-end structure

▶ Lexer (aka scanner, tokenizer)
▶ Transforms program to list of tokens

▶ Produces name table (usually hash table)

▶ Parser
▶ Transforms list of tokens to AST

▶ Symbol table construction▶ Symbol table construction
▶ Fills in name table with information about

names in program – type, location, etc.

Manual and automatic methods

▶ We will study how to write lexers and
parsers For each we will give a manualparsers. For each, we will give a manual
technique and an automatic one:

▶ Lexing:
▶Manual: Finite-state machines

▶ Automatic: Regular expressions – ocamllex

▶ Parsing
▶Manual: Top-down (recursive descent) parsing

▶ Automatic: Bottom-up (LR(1)) - ocamlyacc

2/1/2010

3

Lexer

▶ Divide input into “tokens”

▶ Tokens are smallest units that are useful
for parsing. E.g. parser needs to know if
“while” keyword appears; doesn’t need to
know that it is made up of characters w, h,
etc.etc.

▶ Why? Efficiency
▶ Simpler to specify grammatical structure, and

implement parser, in terms of tokens

Lexer Input & Output

▶ Lexer Input
▶Character stream in the form of

▶ Input Stream, or

▶String

▶ Lexer Output
▶ Stream of tokens, or,

▶ List of tokens

2/1/2010

4

Tokens

type token =
EOF | BOOLEAN | BREAK | CASE | CHAR | CLASS | CONST | CONTINUE

| DO | DOUBLE | ELSE | EXTENDS | FINAL | FINALLY | FLOAT | FOR| DO | DOUBLE | ELSE | EXTENDS | FINAL | FINALLY | FLOAT | FOR
| DEFAULT | IMPLEMENTS | IMPORT | INT | NEW | IF | PUBLIC
| SWITCH | RETURN | VOID | STATIC | WHILE | THIS
| NULL_LITERAL | LPAREN | RPAREN | LBRACE | RBRACE | LBRACK | RBRACK
| SEMICOLON | COMMA | DOT | EQ | GT | LT | NOT | COMP
| QUESTION | COLON | EQEQ | LTEQ | GTEQ | NOTEQ | ANDAND | OROR
| PLUSPLUS | MINUSMINUS | PLUS | MINUS | MULT | DIV | AND
| OR | XOR | MOD | LSHIFT | RSHIFT | URSHIFT | PLUSEQ | MINUSEQ |

MULTEQMULTEQ
| DIVEQ | ANDEQ | OREQ | XOREQ | MODEQ | LSHIFTEQ | RSHIFTEQ
| URSHIFTEQ
| BOOLEAN_LITERAL of bool
| INTEGER_LITERAL of int
| FLOAT_LITERAL of float
| IDENTIFIER of string
| STRING_LITERAL of string

Example

▶ Input
“ l MP1 { bli i id i (”“class MP1 { public static void main (……”

▶ Output – list of tokens
[CLASS; IDENTIFIER “MP1”; LBRACE; PUBLIC; STATIC; VOID;

IDENTIFIER “main”; LPAREN; ……]

2/1/2010

5

Lexing with FSM

▶ Words recognized by corresponding finite
t t t tstate automaton

▶ Deterministic Finite Automaton (DFA)
▶ A directed graph whose vertices are labeled

from a set Tokens U {Error, Discard} and
whose edges are labeled with sets of
characters. Also, if the outgoing edges from
vertex v are {e1, …, en}, then the sets label(e1),
…, label(en) are disjoint. Also, a vertex is
specified as the start vertex.

Example 1

▶ DFA for identifiers

2/1/2010

6

Example 2

▶ DFA for Operators
; { + += < <= << <<=

Example 3

▶ DFA for integer constants

2/1/2010

7

Example 4

▶ DFA for integers and floats

Completing the DFA

▶ Need to create a single DFA for all tokens –
ll th t ll t i d t hrecall that all outgoing edges must have

disjoint label sets.

▶ For keyword:
▶Use DFA for identifiers, but look in table when

token is complete to check if it is a keyword.p y

2/1/2010

8

Completing the DFA

Implementing lexing with a DFA

▶ Define a transition function. Give each state a
numbernumber.
▶ transition: state x character -> state ∪ {-1}

▶ Label
▶ state -> token ∪ {discard, error}

▶ Assume start state = 0

2/1/2010

9

Implementing lexing with a DFA
Function to get a single token:

(state × string) getnexttoken() {(g) g () {

s = 0; tokenchars = “”;

while (true) {

c = peek at next char

if (move(s,c) == -1)

return (s, tokenchars)

move c from input to tokenchars

s = move(s,c)

}

Implementing lexing with a DFA
token list gettokens() {

tokenlis = []

while (true) {

c = peek at next char

if (c == eofchar) {

tokenlis = tokenlis @ [EOF]

break

}

(s, tokenchars) = getnexttoken()

perform action based on s and tokenchars

}

return tokenlis

}

2/1/2010

10

Typical lexer actions

▶ Recall that a state’s label is token, error, or
di d A ti d d th t l b ldiscard. Action depends on that label, e.g.:
▶ Error: Represents an erroneous input; abort.

▶ LTLT:

▶ IDENT▶ IDENT:

▶ COMMENT

More DFAs

2/1/2010

11

More DFAs

