
Class 4 - Overview of language
implementation

• Static vs. dynamic languages

• Program execution and run-time systems

• Compiler structure

• Some history

– Typeset by FoilTEX –

Overview of today’s class

• Language types

• Static, vs.

• dynamic

• Implementation approaches

• Compile to machine code, vs.

• Compile to virtual machine code, vs.

• Directly execute (”interpret”)

• Run-time support

• “Raw” machine, vs.

• Extensive run-time support (e.g. garbage collection)

– Typeset by FoilTEX –

Language types

• Static, aka “compiled,” aka “conventional”

• Examples: C, C++, Fortran

• Static type-checking

• “Manual” memory management

• Run-time values not “tagged” — e.g. cannot determine type of value
at run time

• Dynamic, aka “interpreted,”

• Examples: Java, OCaml, Python, Lisp

• Often lack static type-checking (Python, Lisp) (but sometimes have it:
Java, OCaml)

• Automatic memory management, aka garbage collection

• Run-time values “tagged” — e.g. can determine properties of values
at run time

– Typeset by FoilTEX –

Type checking - static vs. dynamic

• When is type-checking done?

• Statically, i.e. at compile time

• Dynamically, i.e. at run time. (Values must be tagged in
some way.)

• How strong?

• Strong: no type errors possible, e.g. if program has
expression “x.a”, then x is definitely an object of a class
that has a field named a.

• Weak: programmer may bypass type system

• These are properties of the language, i.e. specified in the
language’s definition.

– Typeset by FoilTEX –

Type checking (cont.)
Java: int f (int x) { return x+1; }

... f(new C()) ...

OCaml: let f x = x+1;;
... f true ...

C or C++: int f (int x) { return x+1; }
... f((int)(new C())) ...

Python: def f (x):
return x+1

... f([]) ...

• Note: Not all errors are type errors — e.g. hd [], or 5/0. Call those
value errors. In Java and OCaml, no type errors can occur at run time;
in Python, both value and type errors can occur; in C or C++, type errors
cannot normally occur, but you can cause them by injudicious casting.

– Typeset by FoilTEX –

Automatic memory management

• Consider these programs:

C: for (i=0; i<=Max; i++)
x = malloc(sizeof(float))

Java: for (i=0; i<=Max; i++)
x = new C()

• Suppose Max is a very large number. What will happen?

• Automatic memory management also called garbage collec-
tion.

– Typeset by FoilTEX –

Run-time tags

• Suppose you want to write a function classOf(x) that
returns the name of x’s class, where x is a pointer to an
object. It would be used like this:

C++: void f (void *x) {
cout << classOf(x); }

Java: void f (Object x) {
println(classOf(x)); }

• Is it possible?

• In Java, can see not only the type of a variable, but the
name and fields of its class, and other aspects of the run-time
state. This is called reflection.

– Typeset by FoilTEX –

What compilers do

• Compilers translate high-level language programs (C, C++,
Java, Python, Ocaml, . . .) to an executable form.

• Conventional: Translate to machine language; load and run.

• “Dynamic:” Translate to “virtual,” or “abstract,” ma-
chine language; virtual machine emulator loads and exe-
cutes virtual machine code. (Or, dynamic languages are
“interpreted” — loaded and executed without translating
to an executable form; they may translate to such a form
internally.)

– Typeset by FoilTEX –

Compiling to machine code

• Compiler knows machine it is compiling for.

• Generates machine instructions, e.g. C compiled for x86:

int f (int x) {
return x+1;

}
⇒

.globl f
.type f, @function

f:
pushl %ebp
movl %esp, %ebp
movl 8(%ebp), %eax
addl $1, %eax
popl %ebp
ret

• Execute directly on machine of correct type.

– Typeset by FoilTEX –

Compiling to virtual machine

• Compiler translate to a made-up machine language for which
no machine actually exists.

• Generates virtual (or abstract) machine instructions, e.g.
Java:

int f (int x) {
return x+1;

}
⇒

iload_1
iconst_1
iadd
ireturn

• A program reads that code and then executes it one instruc-
tion at a time (”emulates” the non-existent machine).

– Typeset by FoilTEX –

Interpretation

• Alternate implementation method: Don’t translate program
at all. Execute program by traversing tree and executing each
part. The program that does this is called an interpreter.

• Hardly ever used any more. (Languages that produce no
executable files are often called “interpreted,” but usually do
actual compilation internally. It is sometimes possible to save
this internal form in a file, e.g. Python “pyc” files.)

– Typeset by FoilTEX –

What method is best?

• In principle, either method can be used for any language.

• In practice, older languages (C, C++, Fortran) are usually
compiled to machine language, while new ones (Java, OCaml,
Python) use virtual machines.

– Typeset by FoilTEX –

Run-time systems

• Run-time system = complete set of services available to
running programs. Can range from raw machine to virtual
machine:

• “Raw” machine: Just O.S. services, e.g. read/write files;
allocate memory; spawn processes; etc.

• Virtual machine: O.S. services, plus run-time type-checking;
garbage collection; reflection

– Typeset by FoilTEX –

Executing C programs

• C programs are translated to machine language.

• Run on raw machine

• No run-time type-checking - type errors can go undetected
until they cause a machine-level problem, e.g. null derefer-
ence

• No garbage collection, aka automatic memory management
- memory allocated (malloc’d) is never available until it is
expressly freed.

– Typeset by FoilTEX –

Executing Java programs

• javac translates Java programs to Java virtual machine
(JVM) code

• JVM code executed by virtual machine (java)

• VM knows types of all variables - run-time type checks

• Garbage collection - no need to “free” memory

• Reflection - can discover, e.g., type class of an object, see
what fields it has, etc.

• Many Java virtual machines translate JVM code to native
machine code, either as soon as they are loaded or after
they have executed for a while. This is called just-in-time

compilation.

– Typeset by FoilTEX –

Executing OCaml programs

• Translated to virtual machine code

• Can compile programs into files, but normally programs are
executed immediately

• Run-time system

• G.C.

• No run-time type checks

– Typeset by FoilTEX –

Executing Python programs

• Translated to virtual machine code

• Run-time system

• G.C.

• Run-time type checks

– Typeset by FoilTEX –

Overview of today’s class (revisited)

• Language types

• Static, vs.

• dynamic

• Implementation approaches

• Compile to machine code, vs.

• Compile to virtual machine code, vs.

• Directly execute (”interpret”)

• Run-time support

• “Raw” machine, vs.

• Extensive run-time support (e.g. garbage collection)

– Typeset by FoilTEX –

Engineering trade-offs

• Different implementations present trade-offs between differ-
ent values: fast response time; fast execution time; type-
safety; portability; implementation complexity.

– Typeset by FoilTEX –

History of languages — 1950’s

• Late 1950’s:

FORTRAN
Not very high level
Compiler produced

excellent code
No automatic memory mgt
No recursion
Static typing
“Compiled” language

LISP
Fully-parenthesized syntax
Dynamically-allocated lists
Automatic memory mgt
Recursion
Dynamic typing
“Interpreted” language

– Typeset by FoilTEX –

History of languages — 1960’s

• Compiled languages:

• Interpreted (“dynamic”) languages:

– Typeset by FoilTEX –

History of languages — 1970’s

• Compiled languages:

• Interpreted (“dynamic”) languages:

– Typeset by FoilTEX –

History of languages —
1980’s-present

• 1980’s

• 1990’s

• 2000’s

– Typeset by FoilTEX –

Compilers

• Compiler structure:

• Abstract syntax tree = tree representation of program

• Symbol table = properties of names defined in program -
type of variables; argument types of functions; etc.

– Typeset by FoilTEX –

Compiler front end

• Front end divided into three phases:

– Typeset by FoilTEX –

History of front ends

• 1950’s — lexing, parsing by ad hoc means

• Mid-50’s — Chomsky hierarchy

– Typeset by FoilTEX –

History of front ends (cont.)

• 1960’s — Application of Chomsky hierarchy

• 1970’s — Knuth discovers LR(k) grammars

– Typeset by FoilTEX –

Summary

• Compiler front end analyzes program, produces AST and
symbol table

• Compiler back end produces target machine code or virtual
machine code

• If machine code, program is executed directly, probably with
minimal run-time support by O.S. services

• If virtual machine code, program executed by emulator,
probably with automatic memory management, possibly
run-time type-checking, reflection

– Typeset by FoilTEX –

