Class 4 - Overview of language
implementation

® Static vs. dynamic languages
® Program execution and run-time systems
® Compiler structure

® Some history

— Typeset by Fol TEX —

Overview of today’s class

® Language types

e Static, vs.

e dynamic
® Implementation approaches

® Compile to machine code, vs.
® Compile to virtual machine code, vs.

® Directly execute (”interpret”)

® Run-time support

e “Raw’’ machine, vs.

e Extensive run-time support (e.g. garbage collection)

— Typaset by Foil TEX —

Language types

® Static, aka “compiled,” aka “conventional”

® Examples: C, C+4++, Fortran

® Static type-checking

® “Manual” memory management
)

Run-time values not “tagged” — e.g. cannot determine type of value
at run time

® Dynamic, aka “interpreted,”

® Examples: Java, OCaml, Python, Lisp
® Often lack static type-checking (Python, Lisp) (but sometimes have it:

Java, OCaml)
® Automatic memory management, aka garbage collection
® Run-time values “tagged” — e.g. can determine properties of values

at run time

— Typaset by Foil TEX —

Type checking - static vs. dynamic

® When is type-checking done?

e Statically, i.e. at compile time

e Dynamically, i.e. at run time. (Values must be tagged in
some way.)

® How strong?

e Strong: no type errors possible, e.g. if program has

expression ‘“x.a”, then x is definitely an object of a class
that has a field named a.

® Weak: programmer may bypass type system

® These are properties of the language, i.e. specified in the
language’s definition.

— Typaset by Foil TEX —

Type checking (cont.)

Java: int f (int x) { return x+1; } +7&.(
... T(new CQO) ... EW

(mq_&l'
OCaml: let f x = x+1;; :

S d ~N=2v”

i ¢ F Lrue .. ’3 ’t‘jbﬁ? €

C or C4++: int £ (int x) { return x+1; } /
f((int) (new C())) ...

Python: def £ (K):

returnl ﬁl S Yy L FM
R il j ﬂf‘q P

® Note: Not all errors are type errors — e.g. hd [], or 5/0. Call those
value errors. In Java and OCaml, no type errors can occur at run time;
in Python, both value and type errors can occur; in C or C+4++4, type errors
cannot normally occur, but you can cause them by injudicious casting.

— Typaeset by Fol TEX —

Automatic memory management

® Consider these programs:

C: for (i=0; i<=Max; i++)
X = malloc(sizeof(float));

Java: for (i=0; i<=Max; i++)

x = new CQ) .
® Suppose Max is a very large number. What will happen?

® Automatic memory management also called garbage collec-
tion.

— Typeset by Fol TEX —

Run-time tags

® Suppose you want to write a function class0f(x) that
returns the name of x’s class, where x is a pointer to an
object. It would be used like this:

C++4: void f (void *x) {
cout << classO0f(x); }

Java: void f (Object x) { /

println(class0f (x));

e A ot 0

e type of a variable, but the
name and fields of its class, and other aspects of the run-time
state. This is called reflection.

® Is it possible?

® In Java, can see not only

— Typaset by Foil TEX —

What compilers do

® Compilers translate high-level language programs (C, C++,
Java, Python, Ocaml, ...) to an executable form.

® Conventional: Translate to machine language; load and run.
e “Dynamic:” Translate to “virtual,” or “abstract,” ma-
chine language; virtual machine emulator loads and exe-
cutes virtual machine code. (Or, dynamic languages are
“interpreted” — loaded and executed without translating

to an executable form; they may translate to such a form
internally.)

— Typaset by Foil TEX —

Compiling to machine code

® Compiler knows machine it is compiling for.

® Generates machine instructions, e.g. C compiled for x86:

.globl £
.type £, @function
f:

int £ (int x) { pushl %ebp
return x+1; — movl %esp, Jebp
} movl 8(Yebp), %eax

addl $1, Yeax
popl J%ebp

ret

® Execute directly on machine of correct type.

— Typeset by Fol TEX —

Compiling to virtual machine

® Compiler translate to a made-up machine language for which
no machine actually exists.

® Generates virtual (or abstract) machine instructions, e.g.

Java:

iload_1

int £ (int x) { % e
iconst_1

return x+1: — .

iadd

}]
ireturn

® A program reads that code and then executes it one instruc-
tion at a time (" emulates” the non-existent machine).

— Typaset by Foil TEX —

Interpretation

® Alternate implementation method: Don’t translate program
at all. Execute program by traversing tree and executing each
part. The program that does this is called an interpreter.

® Hardly ever used any more. (Languages that produce no
executable files are often called “interpreted,” but usually do
actual compilation internally. It is sometimes possible to save
this internal form in a file, e.g. Python “pyc” files.)

— Typeset by Fol TEX —

What method is best?

® In principle, either method can be used for any language.

® In practice, older languages (C, C++, Fortran) are usually
compiled to machine language, while new ones (Java, OCaml,
Python) use virtual machines.

— Typeset by Fol TEX —

Run-time systems

® Run-time system = complete set of services available to
running programs. Can range from raw machine to virtual
machine:

e “Raw” machine: Just O.S. services, e.g. read/write files;
allocate memory; spawn processes; etc.

e Virtual machine: 0.S. services, plus run-time type-checking;
garbage collection; reflection

— Typaset by Foil TEX —

Executing C programs

® C programs are translated to machine language.
® Run on raw machine

® No run-time type-checking - type errors can go undetected
until they cause a machine-level problem, e.g. null derefer-
ence

® No garbage collection, aka automatic memory management
- memory allocated (malloc’d) is never available until it is
expressly freed.

— Typaset by Foil TEX —

Executing Java programs

® javac translates Java programs to Java virtual machine
(JVM) code

® JVM code executed by virtual machine (java)

e VM knows types of all variables - run-time type checks
e Garbage collection - no need to “free” memory

® Reflection - can discover, e.g., type class of an object, see
what fields it has, etc.

® Many Java virtual machines translate JVM code to native
machine code, either as soon as they are loaded or after
they have executed for a while. This is called just-in-time
compilation.

— Typaset by Foil TEX —

Executing OCaml programs

® Translated to virtual machine code

® Can compile programs into files, but normally programs are
executed immediately

® Run-time system

e G.C.

® No run-time type checks

— Typaeset by Fol TEX —

Executing Python programs

® Translated to virtual machine code

® Run-time system

e G.C.

® Run-time type checks

— Typaeset by Fol TEX —

Overview of today’s class (revisited)

® Language types

e Static, vs.

e dynamic
® Implementation approaches

e Compile to machine code, vs.
® Compile to virtual machine code, vs.

® Directly execute (" interpret”)

@® Run-time support

e “Raw’” machine, vs.

e Extensive run-time support (e.g. garbage collection)

— Typaset by Foil TEX —

Engineering trade-offs

® Different implementations present trade-offs between differ-
ent values: fast response time; fast execution time; type-
safety; portability; implementation complexity.

— Typeset by Fol TEX —

History of languages — 1950’s

® Late 1950’s:

FORTRAN

Not very high level

Compiler produced
excellent code

No automatic memory mgt

No recursion

Static typing

“Compiled” language

— Typeset by Fol TEX —

LISP

Fully-parenthesized syntax
Dynamically-allocated lists
Automatic memory megt
Recursion

Dynamic typing
“Interpreted” language

History of languages — 1960’s

® Compiled languages:

® Interpreted (“dynamic”) languages:

— Typeset by Fol TEX —

History of languages — 1970’s

® Compiled languages:

® Interpreted (“dynamic”) languages:

— Typeset by Fol TEX —

History of languages —
1980’s-present

® 1980’'s

® 1990’s

® 2000’s

— Typaeset by Fol TEX —

Compilers

® Compiler structure:

@ Fra® ,.-—-—'>] _J/‘-H""‘\) mc[ﬂ— %

-.-Q...U\.Q 11___&“‘}
(o
® Abstract syntax tree = tree representation of program
® Symbol table = properties of names defined in program -

type of variables; argument types of functions; etc.

— Typaset by Foil TEX —

Compiler front end

® Front end divided into three phases:

>
Sewres |
S CAnwer

"{'6 \:ert: Fa-L g

- HE]

— Typaset by Foil TEX —

—_—

o
L&Xer\ ——--> 3 Ken

\ &‘»LL

—

'j:Q - \;\J(ﬂ"w\mixm'(\i\u

V¢ a'r‘e gz on ;:_’C: (:k-)______\f__’i:—

History of front ends

® 1950's — lexing, parsing by ad hoc means
® Mid-50’s — Chomsky hierarchy

Co«‘rby‘c'{te \mywys <= VPVA

e [TV VN s = A
gt L == 3

s
e

— Typeset by Fol TEX —

History of front ends (cont.)

® 1960's — Application of Chomsky hierarchy
(Tfﬂﬂ*c'\ﬂ- 'S CT’G .
-+, _farsﬂ'rs

LW"(TA,-eTiéV&":* /T'-ranlr-t ﬂt?. fﬁJr

favser 72w~fat’ia (s

b |exer

® 1970’s — Knuth discovers LR(k) grammars ~
\— (
sulbset G'h Coa

J
~ Typeset by Foil TEX — ’ﬂ\a—'t C[Lt aﬁT T? _ Ky aCC. i

Summary

® Compiler front end analyzes program, produces AST and
symbol table

® Compiler back end produces target machine code or virtual
machine code

e |f machine code, program is executed directly, probably with
minimal run-time support by 0O.S. services
e If virtual machine code, program executed by emulator,

probably with automatic memory management, possibly
run-time type-checking, reflection

— Typaset by Foil TEX —

