
1/25/2010

1

CS 421 Lecture 3
Today's class: Types in OCaml and abstract syntax

Type declaration in OCaml
TTrees
Polymorphic types
Abstract syntax

Lecture 3

Type declaration in OCaml

OCaml allows news names to be introduced as abbreviations
for types:

type t = tetype t = te
te is a type expression:
te = int | string | unit | … | te list | te * te * … * te

Lecture 3

1/25/2010

2

Type declaration in OCaml

More importantly, it allows you to create new types by
defining a set of constructors:
type t = C [of te] | | C [of te]type t = C1 [of te1] | … | Cn [of ten]
where C1 , … , Cn are the constructors, (Constructor
names must start with a capital letter.)
Values of type t are created by applying C1 to value of type
te1, or C2 to value of type te2, etc.

Lecture 3

Example – enumerated types

Ex.
type weekday = Mon | Tues | Wed | Thurs | Fri;;
let today = Tues;;y ;;
let weekday_to_string d =
match d with

Mon -> “Monday”
| Tues -> “Tuesday”
| … ;;

Lecture 3

Corresponds to “enum” type in C, C++:
typedef enum {Mon, Tues, Wed, Thurs, Fri} weekday;

1/25/2010

3

Example – disjoint unions

Ex.
type shape = Circle of float

| Square of float| q
| Triangle of float * float * float

let c = Circle 5.7
let t = Triangle (2.0, 3.0, 4.0)

(Note: Triangle 2.0 3.0 4.0 is type error.)
This corresponds to what is called discriminated union,
tagged union disjoint union or variant record

Lecture 3

tagged union, disjoint union, or variant record.

Example – disjoint unions (cont.)

let shape_to_string S =

match s with

Circle r -> “circle” ^ float_to_string r

| Square t -> “square” ^ float_to_string t

| Triangle (s1, s2, s3) ->

“triangle(“ ^ float_to_string s1 ^ “,” ^

float_to_string s2 ^ “,” ^

float_to_string s3 ^ “)”

Lecture 3

1/25/2010

4

How to do this in C

struct shape {

int type_of_shape;

union {

struct {float radius;}

struct {float side;}

struct {float side1, side2, side3;} triangle;

} shape_data;

}

Shape_to_string function would look like this:

Lecture 3

switch (type_of_shape){

case 0: cout << “circle” << s.shape_data.radius;

… etc. …

How to do this in Java – method 1
class Shape{

float x; // radius or side

float side2, side3;

i t h tint shape_type;

Shape(int i, float f){

shape_type = i;

x = f; }

Shape(float, float, float){

shape_type = 2; x = ...;

id 2 id 3

Lecture 3

side2 = ...; side3 = ...;

}

}

shape_to_string looks the same as in C.

1/25/2010

5

How to do this in Java – method 2

class Shape{

abstract string shape_to_string();

}

class Circle extends Shape {

float radius;

Circle(float r) {radius = r;}

string shape_to_string(){

return “circle” + radius; }

}

class Square extends Shape {

Shape sh;
if (…)

sh = new Circle(…);
else

sh = new Square(…);
…
sh.shape_to_string()

Lecture 3

class Square extends Shape {

float side;

Square (float s) {side = s;}

string shape_to_string(){

return “square” + side; }

}

Recursive type definitions in OCaml

In type t = C of te | … , te can include t.

type mylist = Empty | Cons of int * mylist

let list1 = Cons (3, Cons (4, Empty))

let rec sum x = match x with

Empty -> 0

| Cons(y,ys) -> y + sum ys

Lecture 3

1/25/2010

6

Defining trees

Binary trees (with integer labels):
type bintree = Empty

| BTNode of int * bintree * bintree| BTNode of int bintree bintree

let tree1 = BTNode (3,

BTNode (6, Empty, Empty), . . .));;

Arbitrary trees (with integer labels):
type tree = Node of int * tree list

Lecture 3

let smalltree = Node (3, [])

let bigtree = Node (3, [Node(...), Node(...), …])

Trees

Ex. Create a list of all the integers in a tree. (Use
homework function flatten : (int list) list -> int list):

let rec flatten_tree (Node (n, kids)) =

let rec flatten_list tlis = match tlis with

[] -> []

| (t :: ts) -> flatten_tree t :: flatten_list ts

in n :: flatten (flatten_list kids)

Syntactic note: flatten_tree Node(…,…) would be interpreted as
(flatten_tree Node)(…,…). Since Node has type (int * tree
list) -> int list, and the argument to flatten_tree should be tree,
this is a type error. Need to write flatten_tree (Node(…, …))
.

1/25/2010

7

Defining polymorphic types

type 'a bintree = Empty

| Node of 'a * 'a bintree * 'a bintree

let x = Node(“ben”, Empty, Empty)

let y = Node(4.5, Empty, Empty)

Although bintree is polymorphic, can still define functions
that apply only to some bintrees (as you can for lists), e.g.

l t t t h t ith

Lecture 3

let rec sum t = match t with

Empty -> 0 | Node(i,t1,t2) -> i + sum t1 + sum t2

sum: int bintree -> int

Mutually-recursive types

Mutually-recursive types
type t = C1 of te1 | …
d 1 f 1 |and u = D1 of te1' | …

Example given below

Lecture 3

1/25/2010

8

Abstract syntax

“Deep” structure of program – represents nesting of
syntactic units within other syntactic units as a tree. Can
define as a type in Ocaml e gdefine as a type in Ocaml, e.g.

type stmt = Assign of string * expr

| If of expr * stmt * stmt

and expr = Int of int | Var of string

| Plus of expr*expr | Greater of expr*expr

Lecture 3

“if (x>0) y=y+1; else z=x;”
If(Greater(Var “x”, Int 0),

Assign(“y”, Plus(Var “y”, Int 1)),

Assign(“z”, Var “x”))

Abstract syntax (cont.)

Example: Function to find all the variables used in an
abstract syntax tree (AST):

let rec vars s = match s with

Assign(x,e) -> x :: evars e

| If(e,s1,s2) -> evars e @ vars s1 @ vars s2

and evars e = match e with

Int i -> []

| V > []

Lecture 3

| Var x -> [x]

| Plus(e1,e2) -> evars e1 @ evars e2

| Greater(e1,e2) -> evars e1 @ evars e2

1/25/2010

9

Abstract syntax (cont.)

Abstract syntax for a part of Ocaml gives example of
mutually-recursive type definitions:

type decl = Decl of (string * expr) list

and expr = Int of int | Var of string

| Plus of expr * expr

| Let of decl * expr

E ld h b

Lecture 3

E.g. “let x = 3 and y = 5 in x+y” would have abstract
syntax tree:

Let(Decl[(“x”, Int 3), (“y”, Int 5)],

Plus(Var “x”, Var “y”)

MP 2 – Abstract syntax for MiniJava

(N.B. Do not use this definition as a reference for MP2, as the
definition used there may differ slightly from this.)

type program = Program of (class_decl list)
and class_decl = Class of id * id * (var_decl list) *

(method_decl list)
and method_decl = Method of exp_type * id *

((exp type * id) list) * (var decl list) * (statement list) *

Lecture 3

((exp_type id) list) (var_decl list) (statement list)
exp

and var_decl = Var of exp_type * id

1/25/2010

10

MP 2 – Abstract syntax for MiniJava

and statement = Block of (statement list)
| If of exp * statement * statement
| Whil f * | While of exp * statement
| Println of exp
| Assignment of id * exp
| ArrayAssignment of id * exp * exp
| Break

Lecture 3

| Continue
| Switch of exp * ((int * (statement list)) list)

MP 2 – Abstract syntax for MiniJava

and exp = Operation of exp * binary_operation * exp
| Array of exp * exp | Length of exp
| MethodCall of exp * id * (exp list)| MethodCall of exp * id * (exp list)
| Id of id | This | NewArray of exp_type * exp
| NewId of id | Not of exp | Null | True | False
| Integer of int | String of string | Float of float

and binary_operation = And | Or | LessThan
| Pl | Mi | M l i li i | Di i i

Lecture 3

| Plus | Minus | Multiplication | Division
and exp_type = ArrayType of exp_type | BoolType

| IntType | ObjectType of id | StringType | FloatType
and id = string

1/25/2010

11

MP 2 – Abstract syntax for MiniJava

Functions defined on this abstract syntax will generally consist
of several mutually recursive functions:

let rec f program (Program cds) = let rec f_program (Program cds) …
and f_classdecls cds = match cds with [] -> … | (c::cs) -> …
and f_classdecl (Class(name, superclass, fields, methods)) = …
and f_var_decl (Var (type, nm)) = …
and f_stmt s = match s with

Block sl >

Lecture 3

Block sl -> …
If (e, s1, s2) -> …

… etc. ..
and f_exp e = match e with …

