Lecture 27 Lazy evaluation
and lambda calculus

* What lazy evaluation is

* Why it's useful

* Implementing lazy evaluation
 Lambda calculus

- Has kel

What is lazy evaluation?

« A slightly different evaluation mechanism for
functional programs that provide additional
power.

« Used Iin popular functional language Haskell

» Basic idea: Do not evaluate expressions until it
IS really necessary to do so.

S,What Is lazy evaluation?

O’5im

*In OSSL,,L, change application rule from:
gl finx>e e Vv vix]lyv

ee, v’

to:
el finx >e e, /x]lv

Cfu« ~ —> O>(5+“() (. ’(J‘\\kg_i,)
Whagéifference does it make? / \3

® (C)C*rwﬂ)? 3e4) +|

_""“‘-...Jg' L.../

ee, v

&..A c
o Mffm
—>

,f.,,\j__:)‘ e =0 tha

(e) en |

{(,mx—ﬂ }»gj—?f*—;}f xz0 He O
ey) 2 (L)

sl e, Vv, e, YW

oo, i
(<Y e f) e ..¢, @V‘Lgiy IIStS

« Laziness principle can apply to cons operation.
« Values = constants | funx ->e | e1 ;. e2

ele:e, ¢lv

el::eEUel::ez hd el v
a.f?Uve:l::e2 e2lv
Q/b)___j tlelv
_— __

« Could do the same for all data type, i.e. make
all constructors lazy.

/Qj;& \e /Q-_: e ﬂ ;

Using lazy lists | (o)

 Consider this OCaml definition: 4

let rec ints =funi->1: ints (i+1)
let intsO=ints0 = ()t (O
hd (tl (tl intsQ)) & Ast | wdele)

——

 What happens in OCaml? What WO1J|d
happen in lazy OCaml? B 'T(o + \U

R O ;e (00 L L b
\H/ i Foory (O+\+\)

“Generate and test” paradigm

« Many computations have the form

“generate a list of candidates and choose
the first successful one.”

« Using lazy evaluation, can separate
candidate generation from selection:
— Generate list of candidates — even if infinite
— Search list for successful candidate

 With lazy evaluation, only candidates that
are tested are ever generated.

Example: square roots

* Newton-Raphson method: To find sqrt(x),
generate sequence: <a;>, where ag is
arbitrary, and a,,, = (a, +x/a;)/2. Then
choose first a; s.t. |ai-a_4|<e.

+ letnext x a = (a+x/a)/2
letrec repeatfa=a . repeatf(f a)
let rec withineps (a1::a2::as) =

If abs(a2-a1) < eps then a2
else withinips eps (a2::as)
let sqrt x eps = withineps eps (repeat (next x) (x/2)

sameints

« sameints: (int list) list -> (int list) list -> bool

« OCaml: & Ahen Az = A W2
o e Jol it

sameints lis1 lis2 = match (lis1,lis2) with(
([[])-> true -
| I])-> false inefrf e K
| ([1._) -> false
| ([]::xs,[]::ys)-> sameints xs ys
| ([]::xs,ys)-> sameints xs ys
| (_:xs,[]::ys)-> sameints xs ys
| (a::as,b::bs) -> (a=b) and sameints as bs;;

[[c2) 127;94,8,0) [07(2s9, (5] 1€1)

sameints
ﬂfu._\ (1 z;?}[ﬂj ‘Iﬂ)

« Lazy OCaml: S ,/.{.L\Lk\(ﬁzfﬂ'[ﬂ ()

flatten lis = match lis with
[1->[]
| []::lis’ -> flatten lis’
| (a::as)::lis’ -> a :: flatten (as::lis’)
equal lis1 lis2 = match (lis1,lis2) with ’”j
([L[)-> true feof 1,567 00T :
| (_[]) - false - 1
| ([1_)-> false —_— | GC(,ﬂb(g_CT,Cj) L)
| (a::as, b:ibs) -> (a=b) and equal as bs
sameints lis1 lis2 = equal (flatten lis1) (flatten lis2)

Implementation of lazy eval.

 Use closure model, modified.

* Introduce new value, called a thunk:
<e,nr> - like a closure, but e does not

have to be an abstraction.

77, U <funx>en> 7nx —de,,n >, elv

77,€e, Uy
?],e-Uv

U if 7'(x)=<e,7>
,xVvVy &hﬂ*’ ff—yl':.n ‘:IQ’V\D ln"]
L\j V.

Lambda-calculus

» A-calculus the “original functional language,”
proposed by Alonzo Church in 1941

« Church wrote “Ax.e” instead of “fun x->e”.
— EXprs: var's, 2x.e, e,e,
— Operational semantics:
» Values: (closed) abstractions

. ' L Apply principle of p-equivalence -
} (Ax.e)e' = e[e'/x] - anywhere; repeat until value is

obtained, ifever—({When used i irection -
(Ax.e)e’ = e[e'/x] —this is called B-reduction

—_—

« Computation rule corresponds to lazy
evaluation, i.e. leads to same results.

Lambda-calculus (cont.)

* In a given expression, there may be many
places where g-reduction is applicable.
Some choices may never lead to a value,
while others do, but:

« Theorem (Church-Rosser) For any
expression e, If two sequences of 3-
reductions lead to a value, then they lead

to the same value.

« Theorem Lambda-calculus is a Turing-
complete language.

Representing lists in 7.-calculus

« We have seen how to represent pairs in
OCaml without having them built in:
—pairab=72x ay. Af. fxy

fstp=p (AX. Ay. X)
sndp=p (~X. LY. Y)

 Turns out, you can represent lists (in a

similar way), numbers, truth values, etc.

« Using lazy evaluation with this definition of
lists corresponds to “lazy cons” shown
earlier.

