Lecture 27: Lazy evaluation
and lambda calculus

 What lazy evaluation is
 Why It’s usefu
* Implementing lazy evaluation
e Lambda calculus

What Is lazy evaluation?

* A slightly different evaluation mechanism for
functional programs that provide additional
power.

» Used in popular functional language Haskell

e Basic idea: Do not evaluate expressions until it
IS really necessary to do so.

What Is lazy evaluation?

* In OS_ ., change application rule from:

e, U funx->e e Uv evix]lv

ee, Uv'
to:
e, U funx>e efe,/x]Uv
ee, Vv

What difference does it make?

Lazy lists

 Laziness principle can apply to cons operation.
* Values = constants | funx ->e | el :: e2
ele e e lv
e e, e e, hd e U v
ele e e2lv
thelv

e Could do the same for all data type, i.e. make
all constructors lazy.

Using lazy lists
e Consider this OCaml definition:
etrecints =funi->1:iInts (I+1)

et intsO = ints O
nd (tl (tl ints0))

 What happens in OCaml? What would
happen in lazy OCaml?

“Generate and test” paradigm

 Many computations have the form
“generate a list of candidates and choose
the first successful one.”

e Using lazy evaluation, can separate
candidate generation from selection:
— Generate list of candidates — even if infinite
— Search list for successful candidate

o With lazy evaluation, only candidates that
are tested are ever generated.

Example: square roots

 Newton-Raphson method: To find sqrt(x),
generate sequence: <a;>, where a, IS
arbitrary, and a;,; = (& +x/a))/2. Then
choose first a; s.t. |a-a, ;|<e.

e let next x a = (at+x/a)/2
etrecrepeatfa=a: repeatf(fa)
et rec withineps (al::a2::as) =
If abs(a2-al) < eps then a2
else withinips eps (a2::as)
let sqrt x eps = withineps eps (repeat (next x) (x/2)

sameints

e sameints: (int list) list -> (int list) list -> bool
« OCaml:

sameints lisl lis2 = match (lisl,lis2) with

(0, [) -> true

(,[]) -> false
([],) -> false

([]::xs,[]::ys) -> sameints XS ys

([]::xs,ys) -> sameints XS ys

(_::xs,[]::ys) -> sameints XS ys
(a::as,b::bs) -> (a=b) and sameints as bs;;

sameints
e Lazy OCaml.

flatten lis = match lis with
[->1

| []::lis’ -> flatten lis’

| (a::as)::lis’ -> a :: flatten (as::lis’)
equal lisl lis2 = match (lis1,lis2) with
(LI.L) -> true
(,[]) -> false
([],) -> false
(a::as, b::bs) -> (a=b) and equal as bs
sameints lisl lis2 = equal (flatten lisl) (flatten lis2)

Implementation of lazy eval.

e Use closure model, modified.

e Introduce new value, called a thunk:
<e,n> - like a closure, but e does not

have to be an abstraction.

ne U <funx->en> nix—o<e,nr], elv

n,ee, v

nelv
n' x v

If n'(x)=<e,np

| ambda-calculus

« A-calculus the “original functional language,”
proposed by Alonzo Church in 1941

e Church wrote “Ax.e” instead of “fun x->e”.
— Exprs: var’s, AXx.e, e,€e,

— Operational semantics:
» Values: (closed) abstractions

e Computation rule: Apply principle of B-equivalence -
(Ax.e)e’ = e[e’/X] - anywhere; repeat until value Is
obtained, if ever. (When used in forward direction -
(AXx.e)e’ = e[e’/x] —this Is called B-reduction.)

e Computation rule corresponds to lazy
evaluation, I.e. leads to same results.

Lambda-calculus (cont.)

* In a given expression, there may be many
places where [-reduction is applicable.
Some choices may never lead to a value,

while others do, but:

 Theorem (Church-Rosser) For any
expression e, If two sequences of [3-
reductions lead to a value, then they lead

to the same value.

e Theorem Lambda-calculus is a
complete language.

uring-

Representing lists in A-calculus

* \We have seen how to represent pairs in
OCaml without having them built in:

—pairab =Ax. Ay. AMf. fxy
fstp =p (AX. Ay. X)
sndp=p (AX. LY. V)
e Turns out, you can represent lists (in a
similar way), numbers, truth values, etc.

e Using lazy evaluation with this definition of
lists corresponds to “lazy cons” shown
earlier.

