
Lecture 27: Lazy evaluationLecture 27: Lazy evaluation 
and lambda calculus

• What lazy evaluation is
• Why it’s useful
• Implementing lazy evaluationp g y
• Lambda calculus



What is lazy evaluation?y
• A slightly different evaluation mechanism for 
functional programs that provide additionalfunctional programs that provide additional 
power.
• Used in popular functional language HaskellUsed in popular functional language Haskell
• Basic idea:  Do not evaluate expressions until it 
is really necessary to do so.is really necessary to do so.



What is lazy evaluation?y
• In OSsubst, change application rule from:
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What difference does it make?What difference does it make?



Lazy listsy
• Laziness principle can apply to cons operation.

V l t t | f > | 1 2• Values = constants | fun x -> e | e1 :: e2
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• Could do the same for all data type, i.e. make 
all constructors lazyall constructors lazy.



Using lazy listsUsing lazy lists

• Consider this OCaml definition:Consider this OCaml definition:

let rec ints = fun i -> i :: ints (i+1)let rec ints  fun i > i :: ints (i+1)
let ints0 = ints 0
hd (tl (tl ints0))hd (tl (tl ints0))

• What happens in OCaml? What would• What happens in OCaml?  What would 
happen in lazy OCaml?



“Generate and test” paradigmGenerate and test  paradigm
• Many computations have the form 

“generate a list of candidates and choose 
the first successful one.”

• Using lazy evaluation, can separate 
candidate generation from selection:g
– Generate list of candidates – even if infinite
– Search list for successful candidateSearch list for successful candidate

• With lazy evaluation, only candidates that 
are tested are ever generatedare tested are ever generated.



Example: square rootsExample: square roots
• Newton-Raphson method:  To find sqrt(x), 

t h igenerate sequence: <ai>, where a0 is 
arbitrary, and ai+1 = (ai +x/ai)/2.  Then 
h fi t t | |choose first ai s.t. |ai-ai-1|<ε.

• let next x a = (a+x/a)/2
l t t f t f (f )let rec repeat f a = a :: repeat f (f a)
let rec withineps (a1::a2::as) =

if abs(a2-a1) < eps then a2if abs(a2-a1) < eps then a2
else withinips eps (a2::as)

let sqrt x eps = withineps eps (repeat (next x) (x/2)q p p p ( p ( ) ( )



sameints
• sameints: (int list) list -> (int list) list -> bool

OCaml• OCaml:

sameints lis1 lis2 = match (lis1,lis2) with( , )
([], []) -> true

| (_,[]) -> false
| ([] ) > false| ([],_) -> false
| ([]::xs,[]::ys) -> sameints xs ys
| ([]::xs,ys) -> sameints xs ys
| (_::xs,[]::ys) -> sameints xs ys
| (a::as,b::bs) -> (a=b) and sameints as bs;;



sameints
• Lazy OCaml:

fl tt li t h li ithflatten lis = match lis with
[] -> []

| []::lis’ -> flatten lis’| []
| (a::as)::lis’ -> a :: flatten (as::lis’)

equal lis1 lis2 = match (lis1,lis2) with
([] []) -> true([],[]) -> true

| (_,[]) -> false
| ([],_) -> false
| ( b b ) ( b) d l b| (a::as, b::bs) -> (a=b) and equal as bs

sameints lis1 lis2 = equal (flatten lis1) (flatten lis2)



Implementation of lazy eval.
• Use closure model, modified.

Introd ce ne al e called a th nk• Introduce new value, called a thunk: 
e,η - like a closure, but e does not 

have to be an abstractionhave to be an abstraction.

<fun > [ ]e x e x e e vη η η η⇓ > → ⇓1 2

1 2

,  <fun  -> ,      [ , ],    
, '  

e x e x e e v
e e v

η η η η
η

⇓ > → ⇓
⇓

,   if '( ) ,
'
e v x e
x v

η η η
η

⇓
=

⇓,  x vη ⇓



Lambda-calculus
• λ-calculus the “original functional language,” 

proposed by Alonzo Church in 1941
• Church wrote “λx.e” instead of “fun x->e”.

– Exprs: var’s, λx.e, e1e2Exprs:  var s, λx.e, e1e2

– Operational semantics:
• Values: (closed) abstractionsa ues (c osed) abs ac o s
• Computation rule:  Apply principle of β-equivalence -

(λx.e)e’ ≡ e[e’/x] - anywhere; repeat until value is 
bt i d if (Wh d i f d di tiobtained, if ever.  (When used in forward direction -

(λx.e)e’ ⇒ e[e’/x] – this is called β-reduction.)

• Computation rule corresponds to lazy• Computation rule corresponds to lazy 
evaluation, i.e. leads to same results.



Lambda-calculus (cont.)
• In a given expression, there may be many 

places where β-reduction is applicable.places where β reduction is applicable.  
Some choices may never lead to a value, 
while others do, but:while others do, but:

• Theorem (Church-Rosser)  For any 
expression e if two sequences of βexpression e, if two sequences of β-
reductions lead to a value, then they lead 
to the same valueto the same value.

• Theorem Lambda-calculus is a Turing-
l t lcomplete language.



Representing lists in λ-calculus 
• We have seen how to represent pairs in 

OCaml without having them built in:OCaml without having them built in:
– pair a b = λx. λy. λf. f x y

fst p = p (λx λy x)fst p = p (λx. λy. x)
snd p = p (λx. λy. y)

• Turns out you can represent lists (in a• Turns out, you can represent lists (in a 
similar way), numbers, truth values, etc.
Using lazy evaluation with this definition of• Using lazy evaluation with this definition of 
lists corresponds to “lazy cons” shown 
earlierearlier.


