
Lecture 27: Lazy evaluationLecture 27: Lazy evaluation
and lambda calculus

• What lazy evaluation is
• Why it’s useful
• Implementing lazy evaluationp g y
• Lambda calculus

What is lazy evaluation?y
• A slightly different evaluation mechanism for
functional programs that provide additionalfunctional programs that provide additional
power.
• Used in popular functional language HaskellUsed in popular functional language Haskell
• Basic idea: Do not evaluate expressions until it
is really necessary to do so.is really necessary to do so.

What is lazy evaluation?y
• In OSsubst, change application rule from:

1 2 fun -> [/] '
'

e x e e v e v x v
e e v

⇓ ⇓ ⇓
⇓

to:
1 2 e e v⇓

f [/]⇓ ⇓1 2

1 2

 fun -> [/]

e x e e e x v
e e v

⇓ ⇓
⇓

What difference does it make?What difference does it make?

Lazy listsy
• Laziness principle can apply to cons operation.

V l t t | f > | 1 2• Values = constants | fun x -> e | e1 :: e2

1 2 1 :: e e e e v⇓ ⇓

1 2 1 2

:: :: e e e e⇓

1 2 1

 hd e v⇓

2⇓ ⇓1 2 :: 2

e e e e v
tl e v

⇓ ⇓
⇓

• Could do the same for all data type, i.e. make
all constructors lazyall constructors lazy.

Using lazy listsUsing lazy lists

• Consider this OCaml definition:Consider this OCaml definition:

let rec ints = fun i -> i :: ints (i+1)let rec ints fun i > i :: ints (i+1)
let ints0 = ints 0
hd (tl (tl ints0))hd (tl (tl ints0))

• What happens in OCaml? What would• What happens in OCaml? What would
happen in lazy OCaml?

“Generate and test” paradigmGenerate and test paradigm
• Many computations have the form

“generate a list of candidates and choose
the first successful one.”

• Using lazy evaluation, can separate
candidate generation from selection:g
– Generate list of candidates – even if infinite
– Search list for successful candidateSearch list for successful candidate

• With lazy evaluation, only candidates that
are tested are ever generatedare tested are ever generated.

Example: square rootsExample: square roots
• Newton-Raphson method: To find sqrt(x),

t h igenerate sequence: <ai>, where a0 is
arbitrary, and ai+1 = (ai +x/ai)/2. Then
h fi t t | |choose first ai s.t. |ai-ai-1|<ε.

• let next x a = (a+x/a)/2
l t t f t f (f)let rec repeat f a = a :: repeat f (f a)
let rec withineps (a1::a2::as) =

if abs(a2-a1) < eps then a2if abs(a2-a1) < eps then a2
else withinips eps (a2::as)

let sqrt x eps = withineps eps (repeat (next x) (x/2)q p p p (p () ()

sameints
• sameints: (int list) list -> (int list) list -> bool

OCaml• OCaml:

sameints lis1 lis2 = match (lis1,lis2) with(,)
([], []) -> true

| (_,[]) -> false
| ([]) > false| ([],_) -> false
| ([]::xs,[]::ys) -> sameints xs ys
| ([]::xs,ys) -> sameints xs ys
| (_::xs,[]::ys) -> sameints xs ys
| (a::as,b::bs) -> (a=b) and sameints as bs;;

sameints
• Lazy OCaml:

fl tt li t h li ithflatten lis = match lis with
[] -> []

| []::lis’ -> flatten lis’| []
| (a::as)::lis’ -> a :: flatten (as::lis’)

equal lis1 lis2 = match (lis1,lis2) with
([] []) -> true([],[]) -> true

| (_,[]) -> false
| ([],_) -> false
| (b b) (b) d l b| (a::as, b::bs) -> (a=b) and equal as bs

sameints lis1 lis2 = equal (flatten lis1) (flatten lis2)

Implementation of lazy eval.
• Use closure model, modified.

Introd ce ne al e called a th nk• Introduce new value, called a thunk:
e,η - like a closure, but e does not

have to be an abstractionhave to be an abstraction.

<fun > []e x e x e e vη η η η⇓ > → ⇓1 2

1 2

, <fun -> , [,],
, '

e x e x e e v
e e v

η η η η
η

⇓ > → ⇓
⇓

, if '() ,
'
e v x e
x v

η η η
η

⇓
=

⇓, x vη ⇓

Lambda-calculus
• λ-calculus the “original functional language,”

proposed by Alonzo Church in 1941
• Church wrote “λx.e” instead of “fun x->e”.

– Exprs: var’s, λx.e, e1e2Exprs: var s, λx.e, e1e2

– Operational semantics:
• Values: (closed) abstractionsa ues (c osed) abs ac o s
• Computation rule: Apply principle of β-equivalence -

(λx.e)e’ ≡ e[e’/x] - anywhere; repeat until value is
bt i d if (Wh d i f d di tiobtained, if ever. (When used in forward direction -

(λx.e)e’ ⇒ e[e’/x] – this is called β-reduction.)

• Computation rule corresponds to lazy• Computation rule corresponds to lazy
evaluation, i.e. leads to same results.

Lambda-calculus (cont.)
• In a given expression, there may be many

places where β-reduction is applicable.places where β reduction is applicable.
Some choices may never lead to a value,
while others do, but:while others do, but:

• Theorem (Church-Rosser) For any
expression e if two sequences of βexpression e, if two sequences of β-
reductions lead to a value, then they lead
to the same valueto the same value.

• Theorem Lambda-calculus is a Turing-
l t lcomplete language.

Representing lists in λ-calculus
• We have seen how to represent pairs in

OCaml without having them built in:OCaml without having them built in:
– pair a b = λx. λy. λf. f x y

fst p = p (λx λy x)fst p = p (λx. λy. x)
snd p = p (λx. λy. y)

• Turns out you can represent lists (in a• Turns out, you can represent lists (in a
similar way), numbers, truth values, etc.
Using lazy evaluation with this definition of• Using lazy evaluation with this definition of
lists corresponds to “lazy cons” shown
earlierearlier.

