Lecture 25: Proving

termination/implementing
functions

* Termination of loops

* Function calls
« Conventional (review)
* Higher-order functions

« Virtual functions (object-oriented
languages)

Proving termination

Weird property of the Hoare proof system: Itis
possible to “prove” non-terminating programs.

Canprove: ;= a0 b=50 {while (a = b)
cﬂ(",” = .\ —— fif(a<b)b:=b-a;
j 7("(“0' > ¥ a = gecd(ao,b0o)

Judgments in Hoare logic are assertions about
partial correctness: P{A}Q means “if the state
satisfies P, then after executing A, if A terminates,
the state will satisfy Q." If A doesn’'tterminate the
judgment is vacuously true.

Proving termination

Total correcthess means A will satisfy its
specification (i.e. its partial correctness
formula) and will definitely terminate.

Total correctness is usually proven in two
separate steps: (1) Prove partial
correctness; (2) Prove termination.

Proving termination of loops

Obviously, the only place where non-
termination is possible is in loops.

To prove termination of a loop: Define a
function ¢: program states — non-negative
integers. Prove: For every iteration of the
loop, ¢(the current state) < ¢(the previous
state). As long as ¢ is correctly defined as
a function whose values are non-negative

integers, then the loop cannot go on
forever.

Termination proof examples

sum of n
fibonacci
list append

list reverse

Sum of n

Aﬁ:w n 70

;(=0&y 0 (ﬂ/)"vn/

while (y < n) {
y:=y+1,
X =X+Yy
} (?&73‘20

} . L{ g V«L..)?F
X=1+..+n {La]w&

Cp(’/ NERZACAAN

Fibonacci
X=0&y=1&z=1&1=n

{ n - V\’ Q
while (z < n) { Q%%7”%)
y =x+y,
X =Yy =X |
z:=z+1; - @C D Ze
} . O(x,9.n2) < Cp/"o,ftj y‘%j“')
}

y="1fibn

List length
xX=Ist&y=0

{ @/x/], kt)
while (x #[]) { - | x ‘)
X =1l x;
y: =y +1;
}
}

y = len Ist

List reverse
X=Ist&y=]]

{ (p()(/j,/Q.o‘(')
while (x # []) { \w\-(\/)
y:=hdx:y;
X = tl x; e {X\
}
}

y = rev /st

Function calls

« Conventional functions:
— Stack-like function call/return

— Stack frame contains: parameters, local variables,
return address, etc.

— Offsets of variables within stack frame known
statically

« Higher-order functions: environment (bindings of
variables) outlives function call

 Virtual functions: bound at run time

Run-time environment — stack
structure

Stack before Stack after
caling a caling a
} routine } ‘|7 routine }
FP -
Local variables Local vanaties
SP
(Sack grows Parameters
down
Reaunaddress
EP Previous FP
Local variables Stack
sp frame
{ Sack grows {
'

Lecture 3

Higher-order functions

(For simplicity, assume one argument per function,
no local variables —i.e. like OCaml.)

Use implementation that mimics operational
semantics:

— Environments are pairs stored in heap — value of
parameter and pointer to previous environment

— Closures are pairs stored in heap — address of code
for function and pointer to environment

— Stack frame contains just return address and address
of environment (also saved registers, but we'll ignore

05e) ((J %24y #1)3)

Implementing higher-order
functions — follow op. sem.

S,bc&c S é\n/v___l___
' . -2 .
et

Implementing virtual functions

« Calls to virtual functions (those declared
“virtual” in C++, all methods in Java) are
always indirect — they go through a “virtual
function table.”

« Objects contain fields and pointer to virtual
function table.

« Key point: when compiling any method,
the location of every other method'’s
pointer, within its v.f.t., is a static number.

A class C

class C {int x; String s;
method i (){...}

method j(){...}
} v'f?—QrQ—‘\

— ” = |

@&32&‘ X*“"”’ T

i

D extends C by adding fields

class D extends C {inty; }

G D [— ’T_ =
by —)

—y

D extends C by adding fields,
and redefining methods

class D extends C {inty; method j (){...}}

D extends C by adding fields, redefining
methods, and adding new methods

class D extends C {inty;
methodj (){... }
method k () { ... }}
e

T - ‘)T D[é—C'S
|

EEA

< _
)

) <

