Lecture 25: Proving

termination/implementing
functions

* Termination of loops

* Function calls
« Conventional (review)
* Higher-order functions

« Virtual functions (object-oriented
languages)



Proving termination

Weird property of the Hoare proof system: Itis
possible to “prove” non-terminating programs.
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Judgments in Hoare logic are assertions about
partial correctness: P{A}Q means “if the state
satisfies P, then after executing A, if A terminates,
the state will satisfy Q." If A doesn’'tterminate the
judgment is vacuously true.




Proving termination

Total correcthess means A will satisfy its
specification (i.e. its partial correctness
formula) and will definitely terminate.

Total correctness is usually proven in two
separate steps: (1) Prove partial
correctness; (2) Prove termination.




Proving termination of loops

Obviously, the only place where non-
termination is possible is in loops.

To prove termination of a loop: Define a
function ¢: program states — non-negative
integers. Prove: For every iteration of the
loop, ¢(the current state) < ¢(the previous
state). As long as ¢ is correctly defined as
a function whose values are non-negative

integers, then the loop cannot go on
forever.



Termination proof examples

sum of n
fibonacci
list append

list reverse



Sum of n
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Fibonacci
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List length
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List reverse
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Function calls

« Conventional functions:
— Stack-like function call/return

— Stack frame contains: parameters, local variables,
return address, etc.

— Offsets of variables within stack frame known
statically

« Higher-order functions: environment (bindings of
variables) outlives function call

 Virtual functions: bound at run time



Run-time environment — stack
structure
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Higher-order functions

(For simplicity, assume one argument per function,
no local variables —i.e. like OCaml.)

Use implementation that mimics operational
semantics:

— Environments are pairs stored in heap — value of
parameter and pointer to previous environment

— Closures are pairs stored in heap — address of code
for function and pointer to environment

— Stack frame contains just return address and address
of environment (also saved registers, but we'll ignore
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Implementing higher-order
functions — follow op. sem.
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Implementing virtual functions

« Calls to virtual functions (those declared
“virtual” in C++, all methods in Java) are
always indirect — they go through a “virtual
function table.”

« Objects contain fields and pointer to virtual
function table.

« Key point: when compiling any method,
the location of every other method'’s
pointer, within its v.f.t., is a static number.



A class C

class C {int x; String s;
method i (){...}

method j(){...}
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D extends C by adding fields

class D extends C {inty; }
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D extends C by adding fields,
and redefining methods

class D extends C {inty; method j (){...}}




D extends C by adding fields, redefining
methods, and adding new methods

class D extends C {inty;
methodj (){... }
method k () { ... }}
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