Lecture 26: Proving
termination/implementing
functions

* Termination of loops

* Function calls
« Conventional (review)
* Higher-order functions

* Virtual functions (object-oriented
languages)

Proving termination

Weird property of the Hoare proof system: Itis
possible to “prove” non-terminating programs.

Can prove: ;=308 b =50 {while (a!=b)
if (a<b) b := b-a;
} a =gcd(a0,b0)

Judgments in Hoare logic are assertions about
partial correctness: P{A}Q means “if the state
satisfies P, then after executing A, if A terminates,
the state will satisfy Q.” If A doesn’t terminate the
judgment is vacuously true.

Proving termination

Total correctness means A will satisfy its
specification (i.e. its partial correctness
formula) and will definitely terminate.

Total correctness is usually proven in two
separate steps: (1) Prove partial
correctness; (2) Prove termination.

Proving termination of loops

Obviously, the only place where non-
termination is possible is in loops.

To prove termination of a loop: Define a
function ¢: program states — non-negative
integers. Prove: For every iteration of the
loop, ¢(the current state) < ¢(the previous
state). As long as ¢ is correctly defined as
a function whose values are non-negative

integers, then the loop cannot go on
forever.

Termination proof examples

sum of n
filbonacci
list append

list reverse

Sum of n

x=0&y=0
{
while (y < n) {

y=y+1;
X=X+Yy

Fibonacci

x=0&y=1&z=1&1<n
{
while (z < n) {
y:=X+Yy,
X =Yy —X;
z=z+1;
}

;
y=1ibn

List length

x=Ist&y=20
{
while (X # []) {
X = tl x;
y=y+1;
h

;
y =len Ist

List reverse

x=Ist&y=][]
{
while (X # []) {
vy =hdx:y;
X = tl x;
}
}

y = rev Ist

Function calls

« Conventional functions:
— Stack-like function call/return

— Stack frame contains: parameters, local variables,
return address, etc.

— Offsets of variables within stack frame known
statically

« Higher-order functions: environment (bindings of
variables) outlives function call

* Virtual functions: bound at run time

Run-time environment — stack
structure

Stac k before Stack after
calling a calling a
} routine ;a ily routine }
F P —f- g}
Local warables Local wanables
3P —ip~
{ Stack groves 4 Parameters
down
R ewrn address
Presdous FP —

FP—am- —
Lazal wariables J~ Stack
frarme
] -

{ Sack grovws {
diowt

Lecture 3

Higher-order functions

(For simplicity, assume one argument per function,
no local variables —i.e. like OCaml.)

Use implementation that mimics operational
semantics:

— Environments are pairs stored in heap — value of
parameter and pointer to previous environment

— Closures are pairs stored in heap — address of code
for function and pointer to environment

— Stack frame contains just return address and address
of environment (also saved registers, but we’ll ignore
those)

Implementing higher-order
functions — follow op. sem.

Implementing virtual functions

 Calls to virtual functions (those declared
“virtual” in C++, all methods in Java) are
always indirect — they go through a “virtual
function table.”

* Objects contain fields and pointer to virtual
function table.

« Key point: when compiling any method,
the location of every other method’s
pointer, within its v.f.t., Is a static number.

A class C

class C { int x; String s;
method 1 (){ ...}
method j(){ ...}

J

D extends C by adding fields

class D extends C {inty; }

D extends C by adding fields,
and redefining methods

class D extends C { inty; method| (){...} }

D extends C by adding fields, redefining
methods, and adding new methods

class D extends C {int y;
method| (){...}
method k () { ... }}

