
Lecture 26: Proving
termination/implementing

functionsfunctions
• Termination of loops
• Function calls

• Conventional (review)
• Higher-order functions
• Virtual functions (object-oriented (j
languages)

Proving terminationProving termination
Weird property of the Hoare proof system: It is
possible to “prove” non-terminating programspossible to prove non-terminating programs.

Can prove: a = a0 & b = b0 { while (a != b)
if (a<b) b := b a;if (a<b) b := b-a;

} a = gcd(a0,b0)

Judgments in Hoare logic are assertions about
partial correctness: P{A}Q means “if the state
satisfies P, then after executing A, if A terminates,
the state will satisfy Q.” If A doesn’t terminate the
j d t i l tjudgment is vacuously true.

Proving terminationProving termination
Total correctness means A will satisfy its

specification (i.e. its partial correctness
formula) and will definitely terminate.

Total correctness is usually proven in two
separate steps: (1) Prove partial p p () p
correctness; (2) Prove termination.

Proving termination of loopsProving termination of loops
Obviously, the only place where non-

termination is possible is in loops.
To prove termination of a loop: Define a p p

function φ: program states → non-negative
integers. Prove: For every iteration of the g y
loop, φ(the current state) < φ(the previous
state). As long as φ is correctly defined as) g φ y
a function whose values are non-negative
integers, then the loop cannot go on g p g
forever.

Termination proof examplesTermination proof examples
• sum of n

• fibonacci

• list appendlist append

• list reverse• list reverse

Sum of nSum of n
x = 0 & y = 0y
{

while (y < n) {while (y < n) {
y := y + 1;
x := x + y

}}
}
x = 1 + + nx = 1 + ... + n

FibonacciFibonacci
x = 0 & y = 1 & z = 1 & 1 ≤ n
{

while (z < n) {() {
y := x + y;
x := y – x;x : y x;
z := z + 1;

}}
}

fiby = fib n

List lengthList length
x = lst & y = 0y
{

while (x ≠ []) {while (x ≠ []) {
x := tl x;
y := y + 1;

}}
}
y = len lsty = len lst

List reverseList reverse
x = lst & y = []
{

while (x ≠ []) {while (x ≠ []) {
y := hd x :: y;

tlx := tl x;
}

}
y = rev lsty rev lst

Function callsFunction calls
• Conventional functions:

– Stack-like function call/return
– Stack frame contains: parameters, local variables,

return address etcreturn address, etc.
– Offsets of variables within stack frame known

staticallyy
• Higher-order functions: environment (bindings of

variables) outlives function call)
• Virtual functions: bound at run time

Run-time environment – stack
structurestructure

Lecture 3

Higher-order functionsHigher order functions
(For simplicity, assume one argument per function,

no local variables – i.e. like OCaml.)
Use implementation that mimics operational

semantics:
– Environments are pairs stored in heap – value of

parameter and pointer to previous environmentparameter and pointer to previous environment
– Closures are pairs stored in heap – address of code

for function and pointer to environment
– Stack frame contains just return address and address

of environment (also saved registers, but we’ll ignore
those)those)

Implementing higher-order
functions – follow op. sem.

Implementing virtual functionsImplementing virtual functions

• Calls to virtual functions (those declaredCalls to virtual functions (those declared
“virtual” in C++, all methods in Java) are
always indirect – they go through a “virtualalways indirect they go through a virtual
function table.”

• Objects contain fields and pointer to virtual• Objects contain fields and pointer to virtual
function table.
K i t h ili th d• Key point: when compiling any method,
the location of every other method’s

i t ithi it f t i t ti bpointer, within its v.f.t., is a static number.

A class CA class C

class C { int x; String s;class C { int x; String s;
method i () { … }

th d j () { }method j () { … }
}

D extends C by adding fieldsD extends C by adding fields

class D extends C { int y; }class D extends C { int y; }

D extends C by adding fields,
and redefining methods

class D extends C { int y; method j () {…} }

D extends C by adding fields, redefining y g , g
methods, and adding new methods

class D extends C { int y;
method j () { … }j () { }
method k () { … } }

