
Class 24 – 4/22
Proving properties of imperative programs –

“Hoare logic”Hoare logic
• Judgments, a.k.a. “Hoare formulas”

i• Axioms
• Rules of inference



“Invariants” in programmingp g g
Invariants are relationships among the 

variables of a program that always holdvariables of a program that always hold.
• Within a class, invariants represent 

consistency among fields e g “the countconsistency among fields, e.g. “the count
field is always the same as the number of 
non zero entries in the values array ” or “ifnon-zero entries in the values array,” or “if 
the visited bit of this node is set, and this 
node is not the entry point of the graph thennode is not the entry point of the graph, then 
at least one predecessor’s visited bit is set.”



“Invariants” in programmingp g g
• In a loop, invariants represent relationships 

that hold no matter how often the body ofthat hold no matter how often the body of 
the loop is executed.

x x0; y 1;x = x0; y = 1;
while ( x>0 )

{y := y*x; x := x-1;}{y :  y x; x :  x 1;}

a = a0; b = 0;a = a0; b = 0;
while (a != []) { b = b + hd a;

a = tl a; }a = tl a; }



Hoare logicg
- Hoare logic, introduced by C.A.R. Hoare, is 

an effort to formalize the proof ofan effort to formalize the proof of 
correctness of imperative programs.

- It is a proof system in which properties of- It is a proof system in which properties of 
programs are proved from properties of 
their component partstheir component parts.

- It includes a formalization of the notion of 
l i i t hi h f th h d t floop invariant, which forms the hard part of 
most proofs.



Correctness of imperative programsp p g
- “Hoare formula” says that if the variables in 

a program satisfy some properties, thena program satisfy some properties, then 
after executing a given program, they 
satisfy some different properties.satisfy some different properties.

- Examples:
x>0 { while ( x>0 )x>0 {  while ( x>0 )

{y := y*x; x := x-1;}  }  y = y * x!

x=x0 & y=y0 { t := x; x := y; y := t }
x=y0 & y=x0



true {  if ( x<0 ) x := -x; } x = |x|t ue { ( 0 ) ; } | |

true { n := length(a); b := [hd a];true { n := length(a);  b := [hd a];
a := tl a;
while (a != []) {while (a != []) {

b = (hd a + hd b) :: b;
a = tl a; }a = tl a; }

} bi = Σ ak (where bi = hd (tli b),
n-i-1

} bi  Σ ak (where bi  hd (tl b),
and similarly for ak)

k=0



Inference rules of Hoare logicInference rules of Hoare logic
Judgments:  P {S} Q
P Q ti b t i bl i thP, Q assertions about variables in the 

program
S a statement in this language:

Stmt -> Var :- Expr | Stmt;Stmtp | ;
| if (Expr) then Stmt else Stmt
| while (Expr) Stmt| ( p )



Inference rules of Hoare logic

P[e/x] {x := e} P P & b {S} P 
P { hil (b) S} P & b

P {S1} Q    Q {S2} R
P {S ; S } R

P {while (b) S} P & ¬b

P {S1; S2} R

P P’ P’ {S} Q’ Q’ QP ⇒ P’   P’ {S} Q’  Q’ ⇒ Q
P {S} Q

P & b {S1} Q   P & ¬b {S2} Q
P {if (b) then S1 else S2} Q



Rule of assignment

P[e/x] {x := e} P



ExamplesExamples
y=2 { x:=y }  x=2

y=2 { x:=2 } y=x

x+1=n+1  { x:=x+1 } x=n+1

x+1=n  { x:=x+1 } x=n

true  { x:=2 }  x=2



Rule of consequence

P ⇒ P’   P’ {S} Q’  Q’ ⇒ Q
P {S} QP {S} Q



Sequence rule

P {S1} Q    Q {S2} R
P {S ; S } RP {S1; S2} R



If rule
P & b {S1} Q   P & ¬b {S2} Q
P {if (b) then S1 else S2} Q{ ( ) 1 2}



While rule
P & b {S} P 

P {while (b) S} P & ¬b{ e (b) S} & b



Comments on Hoare logic
• Proofs in Hoare logic are almost syntax-directed, i.e. 
almost have the same shape as the program being 

d h l i h f h l fproved.  The only exceptions are the uses of the rule of 
consequence.

• Applying Hoare rules is largely mechanical – given A 
and Q, most of the proof (including P) can be generated Q, p ( g ) g
automatically.   Creativity is required mainly in 
determining the invariant in a while loop, because Q 
may not have the form “P & ¬b”, and so a formula of 
that form needs to be found (after which the rule of 

b d i P & b ⇒ Q)consequence can be used, proving P & ¬b ⇒ Q).



Example: gcd algorithm
a > 0 & b > 0 & a=a & b=b {a > 0 & b > 0 & a=a0 & b=b0 {

while (a ≠ b)
if ( b) th bif  (a > b) then a := a − b;

else b := b − a;
}   a = gcd(a0, b0)


