CS 421 Lecture 23 — Operational semantics

» Two versions of operational semantics, one without state
and one with. (The one with state is for handling “ref”
values.)

[2 OSdo

» OS;tate

» Scope rules

» how to handle recursion

Lecture 23

Reminder: OS

simp

kUk funx el funx >e

allfinx >e e Uv' v/x]lv

GIBZ'U'V

alv e lv: v=v®v

e®e v

Lecture 23

OSclo

Use closures to represent function values — closer to actual
implementation

Closure = abstraction * environment

Environment = variable — Value - (partial) functions from
variables to values

In closure <e, N>, 1] contains values of free variables in e
Value = constants ' closures
Judgments:
N, € U A

Note: unlike OSg,,, € can contain free variables — but
they must be defined in n.

Lecture 23

Examples of judgments

O, +3417
{x—3} +x4 17
{f — <fun a->ata, O>} f4 ll8
{f— <funa->atb, {b— 10}>} f4 !l 14
Note: unlike OS, ., e can contain free variables — but
they must be defined in n.

(Recursive functions will be discussed later.)

Lecture 23

Rules of OS_,

(ot V.
n.k Uk n,x U nx -
Al -

7, funx > el <funx > e, 7>

n, el <fun x = e,n'> |, €2 Uv' x> v, elv
n, ee2 U v

77, el w 77, €2 Uv: v=vi®w

7, e ®e2lv

Lecture 23

H*’ o 2, x—;mj

et Jor
noxdt g3

.
f“:)-*w \”ﬁ?&"iq 1,303 "["J}] VAR

@Wﬂ*”} e

(o N
¢ f?jwﬁ) "’ / ¢1L{J‘f

B> Pop

2, L(—ﬁ.ln x -> (funy -> x+y) 3) 4 UZ/

Example

pys—

Lecture 23

OS

state

To handle side effects, we need to add “state”. Unlike an
environment, a state is something that changes during
execution of the body of a function.

Expressions evaluate to a value, but also change the state.
Define a new set Loc = {(,, (|, (4, ...} of locations. A state G
Is a map from Loc to Value.

Value = constants ' locations ' closures

Environment = variable — Value

Closure = abstraction * Environment

Judgments: o, 7 € U vV, &

Lecture 23

Rules of OS_...

Const
O',?]I_kUk,O' a,ﬂkaﬂx,O'

o, fun x >ell <funx > e,n>,0o

o,n F eal<funx->en'>, on
oy e Uv'iom

o2 [x>v] F elv,o

o,n aexlv,o'

Lecture 23

Rules of OS_...

on bt ealvwor oup b e lvio' v=vi®w

o,n b e®e:lv.o’

Lecture 23

Rules for stateful operators

on bt elto fcloc o'(@)=v
o,n telv o’

on b eaeltoc tcloc o pt e2lvom

on b a=elQo"fv]
()

o,n b elv.o' ¢ afresh location
o,n + refel 20Tl v]

§QZ " "Fr“, (v, ub\ = Vv
Lecture 23 7 dr) (d “

AR 0 K

Example

sof
?j\"dr‘\l {- ‘f‘-lm}-ﬂ \!’(f'h?ﬂ"; ZR ﬂ,o ’{" J'-:'rjlr \\w (j?, {f—?'] l
"> '

e

e, (et TR A R IS Y
% ool ,
W —

7308 - [<y 50403,
?.x;;_pj F 7C.h__7_ \U ji"’l{>; gﬂ—}bs Tl % U ,e) U

{(—O0}L{x—(} F (funy — (funz —!x)(y:=ly+]))x U1.{(— |}

hat=s

Lecture 22 "ﬂq X F/\:b—ru\j

Scope rules of OCaml

» Scope = which definition (let or fun or rec binding) is
referred to at each use of a name

» Basic rule: whichever is lexically closest. This is a static
rule — correspondence between definition and use is
based solely on the program text.

» Note how the operational semantics enforces this.

» Java, C, C++ generally follow this rule for variables, with
the exception of field references, which may refer to

fields of a superclass; superclasses do not lexically enclose
the reference. However, this rule is still static.

Lecture 23

Dynamic scope

» Some languages use dynamic rules, where the
correspondence between definition and use may vary
during the course of execution.

» Example: dynamic binding of method calls in object-
oriented languages _
bt £, el
e e T Tk bat
ke %hdﬁl—;ﬂc (’tﬂaQ F B '

Lecture 23

Handling recursion

» Cannot create recursive functions with only abstraction
and application — need to be able to use a name within its
own definition

letx=eine = (funx->e')e

(1) Could carry definitions around:
A = map from function names to abstractions

Judgments: A, e Uv
(2) Better idea: introduce new function syntax:

rec fe = function recursively defining f (e an
abstraction)
letrecf=eine = letf=recfeine

(then use let translation above)

Lecture 23

Handling recursion (cont.) a
r
» Advantage is that form of judgments, and existing rules, .
’ﬁ)v’ (’F

are retained.
» Evaluation rule for rec f e in OSg,;:
—_—
recere[recfe}'fj
Hw © o flx-t)
w19

Lf e {2 GE70)
> = ?f—""')“’;__j
= (fm fof (e L=~)
Y (.,-u{ (')‘-u-s'x-n.-)) o

Lecture 23 . . -;"' #:O%M\o
q‘ :;.1 ?ﬁ f (for a.,,.,))(n -1)) 4
- dze e OS

o (ef § oo xm) B

Handling recursion in OS_,

{Rec)

n,recf el <e,n'>
wheren’ is defined circularly such that = n[f—<e, n'>]

Wt«&(g—‘fuﬁia_ﬁmw: ar ol "'y
=

v

(i ﬁ@b)ﬁﬂ_\ﬂ
e > 0| zji\;

Lecture 23 E,

Recursion in OS_...

o,n rec.er <e,n'>,0

where ' is defined circularly such that ' = n[f—<e, 7'>]

Lecture 23

