CS 421 Lecture 23 – Operational semantics

- Two versions of operational semantics, one without state and one with. (The one with state is for handling "ref" values.)
- ▶ OS_{do}
- OS_{state}
- Scope rules
- how to handle recursion

Reminder: OS_{simp}

$$\overline{k \downarrow k} \qquad \overline{\text{fun } x \rightarrow e \downarrow \text{fun } x \rightarrow e}$$

$$\frac{e_1 \bigvee \text{fun } x \rightarrow e \quad e_2 \bigvee v' \quad e[v'/x] \bigvee v}{e_1 e_2 \bigvee v}$$

$$\frac{e_1 \Downarrow v_1 \qquad e_2 \Downarrow v_2 \qquad v = v_1 \oplus v_2}{e_1 \oplus e_2 \Downarrow v}$$

Use closures to represent function values – closer to actual implementation

Closure = abstraction * environment

Environment = variable → Value - (partial) functions from variables to values

In closure <e, η >, η contains values of free variables in e Value = constants \cup closures

Judgments:

Note: unlike OS_{simp} , e can contain free variables — but they must be defined in η .

Examples of judgments

$$\varnothing$$
, + 3 4 \Downarrow 7
 $\{x\mapsto 3\}$, + \times 4 \Downarrow 7
 $\{f\mapsto < \text{fun a -> a+a, }\varnothing>\}$, f 4 \Downarrow 8
 $\{f\mapsto < \text{fun a -> a+b, }\{b\mapsto \text{I0}\}>\}$, f 4 \Downarrow I4

Note: unlike OS_{simp} , e can contain free variables — but they must be defined in η .

(Recursive functions will be discussed later.)

Rules of OS_{clo}

$$\frac{\eta, e_1 \bigvee < \text{fun } x \rightarrow e, \eta' > \bigvee_{v} e_2 \bigvee_{v'} \eta'[x \mapsto v'], e \bigvee_{v} v}{\eta, e_1 e_2 \bigvee_{v}}$$

$$\frac{\eta, e_1 \Downarrow v_1 \quad \eta, e_2 \Downarrow v_2 \quad v = v_1 \oplus v_2}{\eta, e_1 \oplus e_2 \Downarrow v}$$

Example		Vor	
		12x 14	12,713
N., fu y →x+y \$\funy	- (<u>mit</u> +y, 1,,3	W3 1, [4-3]], x+y √ 7
APR 1, 4[*-	47) (for y-	, x+y)3 √	, 7
of land of the x	X Contraction of the contraction		7
Ø, (fun x ->	(fun y -> x+)	y 3) 4 ↓ 7	Ayr
L			

To handle side effects, we need to add "state". Unlike an environment, a state is something that changes during execution of the body of a function.

Expressions evaluate to a value, but also change the state.

Define a new set Loc = $\{\ell_0, \ell_1, \ell_2, \ldots\}$ of locations. A state σ is a map from Loc to Value.

Value = constants \cup locations \cup closures

Environment = variable → Value

Closure = abstraction * Environment

Judgments: σ , $\eta \vdash e \lor v$, σ'

Const

 $\overline{\sigma,\eta \vdash k \lor k,\sigma} \qquad \overline{\sigma,\eta \vdash x \lor \eta x,\sigma}$

 $\sigma, \eta \vdash \text{fun } x \rightarrow e \lor < \text{fun } x \rightarrow e, \eta >, \sigma$

$$\sigma, \eta \vdash e_1 \bigvee < \text{fun } x -> e, \eta'>, \sigma_1$$

$$\sigma_1, \eta \vdash e_2 \bigvee v', \sigma_2$$

$$\sigma_2, \eta'[x \mapsto v'] \vdash e \bigvee v, \sigma'$$

$$\sigma, \eta \vdash e_1 e_2 \bigvee v, \sigma'$$

Rules of OS_{state}

$$\frac{\sigma, \eta \vdash e_1 \bigvee v_1, \sigma_1 \quad \sigma_1, \eta \vdash e_2 \bigvee v_2, \sigma' \quad v = v_1 \oplus v_2}{\sigma, \eta \vdash e_1 \oplus e_2 \bigvee v, \sigma'}$$

$$\frac{\sigma,\eta \vdash e \lor \ell,\sigma' \quad \ell \in \text{Loc } \sigma'(\ell) = v}{\sigma,\eta \vdash !e \lor v,\sigma'}$$

$$\frac{\sigma,\eta \vdash e_1 \lor \ell,\sigma' \quad \ell \in \text{Loc} \quad \sigma',\eta \vdash e_2 \lor v,\sigma"}{\sigma,\eta \vdash e_1 := e_2 \lor 0,\sigma"[\ell \mapsto v]}$$

$$\frac{\sigma, \eta \vdash e \lor v, \sigma' \quad \ell \text{ a fresh location}}{\sigma, \eta \vdash \text{ref } e \lor \ell, \sigma'[\ell \mapsto v]}$$

Seguence op fr: $j(v_1, v_2) = v_2$ Lecture 23

{l-13, {x+1, + (fun 7-1-)(y:=!y+1) | 1, {l-13

[200], + funy → 1 < funy → ..., [200] [200], + x V l, [200]

 $\{\ell \mapsto 0\}, \{x \mapsto \ell\} \vdash (\text{fun } y \to (\text{fun } z \to !x)(y := !y + 1)) \times \text{$\forall 1, \{\ell \mapsto 1\}$}$

e 22 let x= re 0 in

"Own" variable - Wa object local state associated
with a function

Let acc = let x = ref 0 in

fun y -> (x:=!x+y;!x)

acc 1; => 1

acc 2; => 3

acc 2; => 5

-.

Scope rules of OCaml

- Scope = which definition (let or fun or rec binding) is referred to at each use of a name
- Basic rule: whichever is lexically closest. This is a static rule – correspondence between definition and use is based solely on the program text.
- Note how the operational semantics enforces this.
- Java, C, C++ generally follow this rule for variables, with the exception of field references, which may refer to fields of a superclass; superclasses do not lexically enclose the reference. However, this rule is still static.

Dynamic scope

 Some languages use dynamic rules, where the correspondence between definition and use may vary during the course of execution.

Example: dynamic binding of method calls in object-PLISP has anomic scape, unlike o caml.

Handling recursion

 Cannot create recursive functions with only abstraction and application – need to be able to use a name within its own definition

$$let \times = e in e' \equiv (fun \times -> e') e$$

- (1) Could carry definitions around:
 - Δ = map from function names to abstractions Judgments: Δ , e \forall v
- (2) Better idea: introduce new function syntax:

```
rec f e = function recursively defining f (e an abstraction)
```

let rec f = e in e' ≡ let f = rec f e in e' (then use let translation above)

Handling recursion (cont.)

- Advantage is that form of judgments, and existing rules, are retained.
- Evaluation rule for rec f e in OS_{simp}:

rec
$$f \in V$$
 e[rec $f \in I$]

Let rec $f : f$ an $x \rightarrow f$ $x = 0$ thun 0 also $f(x - 1)$
 \Rightarrow let $f : rec f (f$ an $x \rightarrow \cdots)$ in f y
 \Rightarrow (fun $f \rightarrow f$ y) (rec $f (f$ an $x \rightarrow \cdots)$)

 \Rightarrow (rec $f (f$ an $x \rightarrow \cdots)$) y

Handling recursion in OSclo

$\overline{\eta, \operatorname{rec} f e \Downarrow \langle e, \eta' \rangle}^{(\operatorname{Rec})}$

where η' is defined circularly such that $\eta' = \eta[f \mapsto \langle e, \eta' \rangle]$ That of closures and envis are objects - envis

are lanced lasts

(e η') > [g']

Lecture 23

$$\overline{\sigma,\eta \vdash \operatorname{rec} f \ e \Downarrow \langle e,\eta' \rangle,\sigma}$$

where η' is defined circularly such that $\eta' = \eta[f \mapsto <e, \eta'>]$

Why formalize type system and operational senantics Unambiguous definition for larguys reserve and inflomenters - Prave that definition make sense Eg. Sprone that type system and op. sem are methally constant Soudness: Øte: Z & e V V > v har type & for OSsemp, V: Z