CS 421 Lecture 23 — Operational semantics

» Two versions of operational semantics, one without state
and one with. (The one with state is for handling “ref”’
values.)

» First, how to handle recursion
» OS,_,
» OS

» Scope rules

state

Lecture 23



Reminder: OS

simp

k Uk funx ->elfunx >e

eelfunx >e e Uv' evix]lv

eier U v

erdvi e v, v=vidw
ei®ex v

Lecture 23



Handling recursion

» Cannot create recursive functions with only abstraction
and application — need to be able to use a name within its
own definition

letx=eine = (funx->¢€)e
(1) Could carry definitions around:

A = map from function names to abstractions
Judgments: A, e Uv

(2) Better idea: introduce new function syntax:

rec f e = function recursively defining f (e an
abstraction)
letrecf=eine’ = letf=recfeine¢e’

(then use let translation above)
Lecture 23



Handling recursion (cont.)

» Advantage is that form of judgments, and existing rules,
are retained.

» Evaluation rule for rec f e in OS,:

recf elefrecf e/ f]

Lecture 23



OS

clo

Use closures to represent function values — closer to actual
implementation

Closure = abstraction * environment

Environment = variable — Value - (partial) functions from
variables to values

In closure <e, N>, n contains values of free variables in e
Value = constants U closures

Judgments:
nelv

Note: unlike OS; ., e can contain free variables — but

they must be defined in n.
Lecture 23



Examples of judgments

D, +3407
{x—3}, +x4 U7
{f— <funa->a+a, @>},f4 8
{f— <funa->atb,{b— 10}>},f4 U 14

Note: unlike OS; ., e can contain free variables — but
they must be defined in n.

(Recursive functions will be discussed later.)

Lecture 23



Rules of OS_,

n,k Uk n,x U nx

n, funx ->ell <funx->e,n>

n, ell<funx->en'> e v px—v] elv

n, €ie2 Uv

n,eellvi e lve v=vi®ve
n, e®ez v

Lecture 23



Example

3, (fun x -> (funy -> x+y) 3)4 U 7

Lecture 23



Handling recursion in OS_,

(Rec)

n rectf el <enp'>

where 1’ is defined circularly such that n’ = n[f—<e, n'>]

Lecture 23



OS

state

To handle side effects, we need to add “state”. Unlike an
environment, a state is something that changes during
execution of the body of a function.

Expressions evaluate to a value, but also change the state.
Define a new set Loc = {{,, |, ¢,, ...} of locations. A state ¢
is a map from Loc to Value.

Value = constants U locations U closures
Environment = variable — Value

Closure = abstraction * Environment

Judgments: o, M € U V, G’

Lecture 23



Rules of OS

state

onkFklk,c onkFxinxeo

onkfunx >el <funx >e,n> 0o

o,n F el <funx >en'> o1

oL e

o2.n'[X— V]

JV',Gz

— eUV,J'

o,n 6162UV,0'

Lecture 23



Rules of OS

state

ontFelwor oyn bk e lve v=ui®ve

o,n a®ellv o

on Frecfel <en'>co

where n'’ is defined circularly such that n’ = n[f—<e, n'>]

Lecture 23



Rules for stateful operators

ontFelto' reloc o'(0)=v
on F lelvo’

o,n el o' reloc o\n F e2lvo"

on Fe=el()c'[l—V]

o,n Felvo' ¢ afresh location
on Frefel o[l V]

Lecture 23



Example

{{—0},{x—/0} - (fun y — (fun z -!X)(y:=ly+1))x 41, {{— 1}

Lecture 22



Scope rules of OCaml

» Scope = which definition (let or fun or rec binding) is
referred to at each use of a name

» Basic rule: whichever is lexically closest. This is a static
rule — correspondence between definition and use is
based solely on the program text.

» Note how the operational semantics enforces this.

» Java, C, C++ generally follow this rule for variables, with
the exception of field references, which may refer to
fields of a superclass; superclasses do not lexically enclose
the reference. However, this rule is still static.

Lecture 23



Dynamic scope

» Some languages use dynamic rules, where the
correspondence between definition and use may vary
during the course of execution.

» Example: dynamic binding of method calls in object-
oriented languages

Lecture 23



