
CS 421 Lecture 23 – Operational semantics

Two versions of operational semantics, one without state
and one with. (The one with state is for handling “ref” and one with. (The one with state is for handling ref
values.)
First, how to handle recursion
OSclo

OSstate

Scope rules

Lecture 23

Reminder: OSsimp

k k⇓ f > f >⇓k k⇓ fun -> fun -> x e x e⇓

⇓ ⇓ ⇓1 2

1 2

fun -> e ' ['/] e x e v e v x v
e e v

⇓ ⇓ ⇓
⇓

1 1 2 2 1 2 e e v v v v v⇓ ⇓ = ⊕
1 2

e e v⊕ ⇓

Lecture 23

Handling recursion

Cannot create recursive functions with only abstraction
and application – need to be able to use a name within its and application need to be able to use a name within its
own definition

let x = e in e’ ≡ (fun x -> e’) e
(1) Could carry definitions around:

Δ = map from function names to abstractions
J d Δ ⇓Judgments: Δ, e ⇓ v

(2) Better idea: introduce new function syntax:
rec f e ≡ function recursively defining f (e anrec f e ≡ function recursively defining f (e an

abstraction)
let rec f = e in e’ ≡ let f = rec f e in e’

Lecture 23

(then use let translation above)

Handling recursion (cont.)

Advantage is that form of judgments, and existing rules,
are retained.are retained.
Evaluation rule for rec f e in OSsimp:

rec [rec /]f e e f e f⇓

Lecture 23

OSclo

Use closures to represent function values – closer to actual
implementationimplementation

Closure = abstraction * environment
Environment = variable → Value - (partial) functions from(p)

variables to values
In closure <e, η>, η contains values of free variables in e

Value = constants ∪ closures
Judgments:

⇓η, e ⇓ v
Note: unlike OSsimp, e can contain free variables – but

Lecture 23

p
they must be defined in η.

Examples of judgments

∅ + 3 4 ⇓ 7∅, + 3 4 ⇓ 7
{x 3}, + x 4 ⇓ 7

{f < fun a -> a+a, ∅>}, f 4 ⇓ 8{f fun a a a, ∅ }, f 4 ⇓ 8
{f < fun a -> a+b, {b 10}>}, f 4 ⇓ 14

Note: unlike OS e can contain free variables – but Note: unlike OSsimp, e can contain free variables – but
they must be defined in η.

(Recursive functions will be discussed later.)(Recursive functions will be discussed later.)

Lecture 23

Rules of OSclo

,k kη ⇓ , x xη η⇓,k kη ⇓

, fun -> <fun -> , >x e x eη η⇓

, x xη η⇓

, u u ,x e x eη η⇓

1 2, <fun -> , '> ' '['],e x e e v x v e vη η η⇓ ⇓ ⇓1 2

1 2

, fun , [],
,

e x e e v x v e v
e e v

η η η
η

⇓ ⇓ ⇓
⇓

1 1 2 2 1 2

1 2

, , e e v v v v v
e e v

η η
η

⇓ ⇓ = ⊕
⊕ ⇓

Lecture 23

1 2, e e vη ⊕ ⇓

Example

∅ (fun x > (fun y > x+y) 3) 4 ⇓ 7

Lecture 23

∅, (fun x -> (fun y -> x+y) 3) 4 ⇓ 7

Handling recursion in OSclo

rec < '>f e eη η⇓
(Rec)

, rec < , >f e eη η⇓

where η’ is defined circularly such that η’ = η[f <e, η’>]η y η η[, η]

Lecture 23

OSstate

To handle side effects, we need to add “state”. Unlike an
environment, a state is something that changes during environment, a state is something that changes during
execution of the body of a function.

Expressions evaluate to a value, but also change the state.
Define a new set Loc = { 0, 1, 2, …} of locations. A state σ

is a map from Loc to Value.
Value = constants ∪ locations ∪ closures
Environment = variable → Value

*Closure = abstraction * Environment

Judgments: σ, η e ⇓ v, σ’

Lecture 23

Rules of OSstate

, ,k kσ η σ⇓ , ,x xσ η η σ⇓, ,k kσ η σ⇓

fun > <fun > >x e x eσ η η σ⇓

, ,x xσ η η σ⇓

, fun -> <fun -> , >,x e x eσ η η σ⇓

⇓1 1

1, 2 2

, <fun -> , '>,
 ',

e x e
e v

σ η η σ

σ η σ

⇓

⇓,

2,

,
'['] , '

'
x v e v
η

σ η σ
η

⇓
⇓

Lecture 23

1 2, , 'e e vσ η σ⇓

Rules of OSstate

1 1 1 1 2 2 1 2e 'e v v v v vσ η σ σ η σ⇓ ⇓ = ⊕1 1, 1 1 2 2, 1 2

1 2 ,

, , e
, '

e v v v v v
e e v

σ η σ σ η σ
σ η σ

⇓ ⇓ = ⊕
⊕ ⇓

rec < '>f e eσ η η σ⇓, rec < , >,f e eσ η η σ⇓

where η’ is defined circularly such that η’ = η[f <e, η’>]

Lecture 23

Rules for stateful operators

,, ' Loc '()e vσ η σ σ⇓ ∈ =,

,

, ()
, ! 'e v

η
σ η σ⇓

1 , 2 ,

1 2

, ' Loc ', ''
: () ''[]

e e v
e e v

σ η σ σ η σ
σ η σ
⇓ ∈ ⇓

= ⇓1 2 ,, : () []e e vσ η σ= ⇓

' a fresh locatione vσ η σ⇓ ,

,

, a fresh location
, ref '[]
e v

e v
σ η σ

σ η σ
⇓

⇓

Lecture 23

Example

{ 0},{x } (fun y → (fun z →!x)(y:=!y+1))x 1,{ 1}

Lecture 22

Scope rules of OCaml

Scope = which definition (let or fun or rec binding) is
referred to at each use of a namereferred to at each use of a name
Basic rule: whichever is lexically closest. This is a static
rule – correspondence between definition and use is
based solely on the program text.
Note how the operational semantics enforces this.
Java, C, C++ generally follow this rule for variables, with
the exception of field references, which may refer to
fields of a superclass; superclasses do not lexically enclose fields of a superclass; superclasses do not lexically enclose
the reference. However, this rule is still static.

Lecture 23

Dynamic scope

Some languages use dynamic rules, where the
correspondence between definition and use may vary correspondence between definition and use may vary
during the course of execution.
Example: dynamic binding of method calls in object-
oriented languages

Lecture 23

