CS 421 Lecture 22 – The OCaml type system - Polymorphic types, i.e. "type schemes" - Type rules polymorphism introduced by "let" expressions - Examples - Explaining generalization - Reference types in OCaml - How they work - Why they break polymorphism - ▶ The "value restriction" # T_{OCaml} – the Ocaml type system #### Main points about OCaml type system: - Types contain variables (notated α , β , ...) - Variables can be generalized in some circumstances; types with generalized variables are written $\forall \alpha, \beta, \dots, \tau$, and called "type schemes" - If a variable's type is a type scheme, it can be used with any types substituted for the quantified type variables. ## Example of polymorphic types (type schemes) - fst: $\forall \alpha$, β . $\alpha * \beta \rightarrow \alpha$. When applied to (3, "ab"), it has type int * string \rightarrow int; when applied to ([3], fun y -> y+1) it has type int list * (int \rightarrow int) \rightarrow int list. - cons: $\forall \alpha. \alpha * \alpha \text{ list} \rightarrow \alpha \text{ list}$ A user-defined function can have a polymorphic type only in the body of a let expression where it is the let-defined name. ## Types in T_{OCaml} Expressions: consts, variables, application, abstraction, let, Types (notated τ , τ ', τ _n, etc.) : int | bool | ... | $\tau \rightarrow \tau$ ' (for any types τ and τ ') | TypeVar TypeVar = α , β , ... TypeScheme (σ , σ ', etc.) = $\forall \alpha_1, ..., \alpha_n$. τ ($n \ge 0$) (Note: TypeSchemes include types) TypeEnv (notated Γ): map from variables to type schemes Judgments: $\Gamma \vdash \mathsf{e} : \mathsf{ au}$ {f: ∀x: x → p3+ f3: p There is no Const axioms; all predefined names are assumed to be in the initial environment (which we continue to notate, by abuse of notation, \emptyset) There is no Const axioms; all predefined names are assumed to be in the initial environment (which we continue to notate, by abuse of notation, \emptyset) Lecture 22 (Intology book of two of but of book of two of but of the tot of the two two of the two of the two of the th ## Understanding the Var axiom: - If a name has a monomorphic type in Γ , then this works the same as in T_{simp} - If a name has a polymorphic type, then it can be used at any instance of that type. " $\tau \le \sigma$ " means " τ is an instance of σ " i.e. τ is obtained from σ by substituting types for type variables. - The Var rule is an axiom because the assertions above the line are not judgments in the system. Lecture 22 Application and abstraction rules are the same as in T_{simp} . Also add rules for tuples. (Application) $$\frac{\Gamma \vdash e_1 : \tau' \rightarrow \tau \quad \Gamma \vdash e_2 : \tau'}{\Gamma \vdash e_1 e_2 : \tau}$$ (Abstraction) $$\Gamma[x:\tau] \vdash e:\tau'$$ $\Gamma \vdash \text{fun } x \rightarrow e:\tau \rightarrow \tau'$ (Tuple) $$\frac{\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash (e_1, e_2) : \tau_1 * \tau_2}$$ ## Rules of inference of Tocami let is new: (let) $$\frac{\Gamma \vdash e : \tau \qquad \Gamma[x:GEN_{\Gamma}(\tau)] \vdash e' : \tau'}{\Gamma \vdash \iota_{\Gamma} x = e \text{ in } e' : \tau'}$$ GEN $_{\Gamma}(\tau)$ means "generalize the type variables of τ ", i.e. make it $\forall \alpha, \beta, ... \tau$. Example: let $f = \text{fun } \times -> \times 0$ in (f (fun y -> y+1), f (fun n -> [n])): int (int list)Some where we will have: (f (fun y -> y+1), f (fun y -> y+1)): int (f (fun y -> y+1), f (fun y -> y+1)): int (f (fun y -> y+1), f (fun y -> y+1)): int (f (fun y -> y+1), f (fun y -> y+1)): int (f (fun y -> y+1), f (fun y -> y+1)): int (f (fun y -> y+1), f (fun y -> y+1)): int (f (fun y -> y+1), f (fun y -> y+1)): int ## Notes on Tocami - As in T_{simp}, the structure of a proof is completely determined by the syntactic structure of the expression - (2) Judgments always assign types to expressions, never type schemes. E.g. $\Gamma \vdash \mathsf{fst} : \forall \alpha, \beta, \alpha * \beta \to \alpha \mathsf{ is not a}$ valid judgment, even though $\Gamma(\mathsf{fst}) = \forall \alpha, \beta, \alpha * \beta \to \alpha \mathsf{ (implicitly)}$. Every use of a polymorphic name has a specific type. ## Generalization in the let rule To [g: Var. (x-int) -int] + gincs In the let rule, $GEN_{\Gamma}(\tau)$ usually means "quantify over all type variables in τ ." However, consider this case: We can type-check the body of f giving \times type α . Then, g has type $(\alpha \rightarrow \beta) \rightarrow \beta$, which generalizes to $\forall \alpha, \beta. (\alpha \rightarrow \beta) \rightarrow \beta$, so g incr has type int (with α and β both being int), and f types as int * α . Generalizing f, it gets type $\forall \alpha. \alpha \rightarrow$ int * α . Now, if e contains the expression "f true", it type checks. However, f actually requires that \times be of type int. ## Generalization in the let rule (cont.) For this reason, $GEN_{\Gamma}(\tau)$ actually means "quantify over all type variables in τ except those that occur free in Γ ." Then, in this case: let f = fun $$\times$$ -> (let g = fun y -> y \times) in g incr, \times) in & f true if we give \times type α , g has type $(\alpha {\rightarrow} \beta) {\rightarrow} \beta$, but this generalizes to $\forall \beta.(\alpha {\rightarrow} \beta) {\rightarrow} \beta$ (note there is no quantification over α). Now, g incr cannot be typed, because incr has type int ${\rightarrow}$ int, and the closest we can get by instantiating g's type is $\alpha {\rightarrow}$ int. To type-check this term, we would have to give \times type int, so f would have type int ${\rightarrow}$ int*int, and the call "f true" would be a type error. #### References in OCaml OCaml has references, or assignable variables. Unlike most other languages, dereferencing of references has to be done explicitly. Types: α ref – reference to a value of type α Operations: ref: $\alpha \rightarrow \alpha$ ref $!: \alpha \operatorname{ref} \to \alpha$ $:= \alpha \operatorname{ref} * \alpha \to \operatorname{unit}$ Let x = ref 0in (x := 7; |x + 1) We also have ; : $\alpha * \beta \rightarrow \beta$, which is useful only when doing imperative programming. ## Type-checking references Would like to treat these operators as polymorphic, but consider this example: let $i = \text{fun } \times - > \times$ in let fp = ref iin (fp := not; (!fp) 5)i gets type $\forall \alpha.\alpha \rightarrow \alpha$, and then fp would have type i gets type $\forall \alpha.\alpha \rightarrow \alpha$, and then fp would have type $\forall \alpha.(\alpha \rightarrow \alpha)$ ref. Since it is polymorphic, fp can be used at type (bool \rightarrow bool) ref or (int \rightarrow int) ref, making both uses in the last line type-correct. However, the effect is to assign a boolean function to fp and then apply fp to an int. ## Type-checking references (cont.) Treating an expression of type α ref as a normal polymorphic expression has caused a serious error: an expression that type-checks but has a run-time type error. How can the type system be fixed? - Easiest method: do not generalize reference expressions at all – make all refs monomorphic - Method used by OCaml: "value restriction" It turns out that the problem with polymorphic refs can be solved by making this restriction: the type of an expression can be generalized only if the expression is a "syntactic value" — meaning, essentially, that it is either a constant or an abstraction.