
CS 421 Lecture 22 – The OCaml type system

Polymorphic types, i.e. “type schemes”
Type rules polymorphism introduced by “let” Type rules – polymorphism introduced by let
expressions
Examplesp
Explaining generalization
Reference types in OCamlyp

How they work
Why they break polymorphism
The “value restriction”

Lecture 22

TOCaml – the Ocaml type systemTOCaml the Ocaml type system

Main points about OCaml type system:
• Types contain variables (notated α, β, …)
• Variables can be generalized in some circumstances;

types with generalized variables are written
∀α, β, … . τ, and called “type schemes”

• If a variable’s type is a type scheme, it can be used
with any types substituted for the quantified type
variablesvariables.

Lecture 22

Example of polymorphic types (type schemes)Example of polymorphic types (type schemes)

• fst: ∀α, β. α * β → α.
When applied to (3, “ab”), it has type int * string →
int; when applied to ([3], fun y -> y+1) it has type
i t li t * (i t i t) i t li tint list * (int → int) → int list.

• cons: ∀α. α * α list → α list

A user-defined function can have a polymorphic type
only in the body of a let expression where it is the only in the body of a let expression where it is the
let-defined name.

Lecture 22

Types in TOCamlyp OCaml

Expressions: consts, variables, application, abstraction,
let letreclet, letrec

Types (notated τ, τ’, τn, etc.) : int | bool | …
| τ→τ’ (for any types τ and τ’) | TypeVar| τ→τ (for any types τ and τ) | TypeVar

TypeVar = α, β, …
TypeScheme (σ σ’ etc) = ∀α α τ (n ≥ 0)TypeScheme (σ, σ , etc.) = ∀α1, …, αn. τ (n ≥ 0)

(Note: TypeSchemes include types)
TypeEnv (notated Γ): map from variables to type TypeEnv (notated Γ): map from variables to type

schemes
Judgments: Γ e : τ

Lecture 22

Judgments: Γ e : τ

Axioms of TOCaml

TOCaml has just one axiom:

(Var) Γ(x) = σ τ ≤ σ
Γ x : τΓ x : τ

Th C ll d f d There is no Const axioms; all predefined names
are assumed to be in the initial environment
(h h b b f (which we continue to notate, by abuse of
notation, ∅)

Lecture 22

Axioms of TOCaml

Understanding the Var axiom:
• If h hi t i Γ th • If a name has a monomorphic type in Γ, then

this works the same as in Tsimp

If h l hi h i • If a name has a polymorphic type, then it can
be used at any instance of that type. “τ≤σ”

 “ i i f ” i i b i d means “τ is an instance of σ” – i.e. τ is obtained
from σ by substituting types for type variables.

• The Var rule is an axiom because the
assertions above the line are not judgments in

Lecture 22

the system.

Rules of inference of TOCaml

Application and abstraction rules are the same
 T Al dd l f las in Tsimp. Also add rules for tuples.

(Application) Γ e1 : τ’ → τ Γ e2 : τ’
Γ e1 e2 : τ

(Abstraction) Γ[] ’(Abstraction) Γ[x: τ] e : τ’
Γ fun x -> e : τ → τ’

(Tuple) Γ e1 : τ1 Γ e2 : τ2
Γ (e e) : *

Lecture 22

Γ (e1 , e2) : τ1 * τ2

Example: fst (3, true)

Lecture 22

Rules of inference of TOCaml

let is new:
(let) Γ e : τ Γ[x:GENΓ(τ)] e’ : τ’

Γ fun x -> e : τ → τ’Γ fun x e : τ → τ

GEN Γ(τ) means “generalize the type variables Γ() g yp
of τ”, i.e. make it ∀α,β,… τ.

Lecture 22

Example: let f = fun x -> x 0
in f (fun y -> y+1): int(y y)

Lecture 22

Example: let f = fun x -> x 0
in (f (fun y -> y+1),in (f (fun y y 1),

f (fun n -> [n])): int * (int list)

Lecture 22

Notes on TOCaml

(1) As in Tsimp, the structure of a proof is completely
determined by the syntactic structure of the expressiondetermined by the syntactic structure of the expression

(2) Judgments always assign types to expressions, never
type schemes. E.g. Γ fst : ∀α, β. α * β → α is not a
valid judgment, even though Γ(fst) = ∀α, β. α * β → α
(implicitly). Every use of a polymorphic name has a

f specific type.

Lecture 22

Generalization in the let ruleGeneralization in the let rule
In the let rule, GENΓ(τ) usually means “quantify over all

type variables in τ ” However, consider this case (incrtype variables in τ. However, consider this case (incr
has type int->int):

let f = fun x -> (let g = fun y -> y x in g incr, x)(g y y g ,)
in f true

We can type-check the body of f giving x type α. Then, g
has type (α→β)→β, which generalizes to
∀α,β.(α→β)→β, so g incr has type int (with α and β
b th b i i t) d f t i t * G li i f it both being int), and f types as int * α. Generalizing f, it
gets type ∀α. α→ int * α. Now, if e contains the
expression “f true” it type checks However f actually

Lecture 22

expression f true , it type checks. However, f actually
requires that x be of type int.

Generalization in the let rule (cont.)Generalization in the let rule (cont.)
For this reason, GENΓ(τ) actually means “quantify over all type

variables in τ except those that occur free in Γ.” Then, in this case:p
let f = fun x -> (let g = fun y -> y x) in g incr,

x)
i f tin f true

if we give x type α, g has type (α→β)→β, but this generalizes to
∀β.(α→β)→β (note there is no quantification over α). Now, g β (β) β (q) , g
incr cannot be typed, because incr has type int→int, and the
closest we can get by instantiating g’s type is α→int. To type-
check this term we would have to give x type int so f would check this term, we would have to give x type int, so f would
have type int → int*int, and the call “f true” would be a type
error.

Lecture 22

References in OCaml

OCaml has references, or assignable variables. Unlike
most other languages dereferencing of references has to most other languages, dereferencing of references has to
be done explicitly.

Types: α ref – reference to a value of type αTypes: α ref reference to a value of type α
Operations:

ref: α → α refref: α → α ref
!: α ref → α
:= α ref * α → unit:= α ref α → unit

We also have ; : α * β → β, which is useful only when
doing imperative programming.

Lecture 22

doing imperative programming.

Type-checking referencesyp g

Would like to treat these operators as polymorphic, but
consider this example:consider this example:

let i = fun x -> x
in let fp = ref iin let fp ref i

in (fp := not; (!fp) 5)
i gets type ∀α.α→α, and then fp would have type g yp , p yp
∀α.(α→α) ref. Since it is polymorphic, fp can be used
at type (bool→bool) ref or (int→int) ref, making both
uses in the last line type-correct. However, the effect
is to assign a boolean function to fp and then apply fp to
an int

Lecture 22

an int.

Type-checking references (cont.)yp g ()

Treating an expression of type α ref as a normal
polymorphic expression has caused a serious error: an polymorphic expression has caused a serious error: an
expression that type-checks but has a run-time type
error.

How can the type system be fixed?
• Easiest method: do not generalize reference g

expressions at all – make all refs monomorphic
• Method used by OCaml: “value restriction”y

Lecture 22

The “value restriction”

It turns out that the problem with polymorphic refs can
be solved by making this restriction: the type of an be solved by making this restriction: the type of an
expression can be generalized only if the expression is a
“syntactic value” – meaning, essentially, that it is either y g y
a constant or an abstraction.

Lecture 22

