
CS 421 Lecture 22 – The OCaml type system

Polymorphic types, i.e. “type schemes”
Type rules polymorphism introduced by “let” Type rules – polymorphism introduced by let  
expressions
Examplesp
Explaining generalization
Reference types in OCamlyp

How they work
Why they break polymorphism
The “value restriction”
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TOCaml – the Ocaml type systemTOCaml the Ocaml type system

Main points about OCaml type system:
• Types contain variables (notated α, β, …)
• Variables can be generalized in some circumstances; 

types with generalized variables are written
∀α, β, … . τ, and called “type schemes”

• If a variable’s type is a type scheme, it can be used 
with any types substituted for the quantified type 
variablesvariables.
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Example of polymorphic types (type schemes)Example of polymorphic types (type schemes)

• fst: ∀α, β. α * β → α.
When applied to (3, “ab”), it has type int * string →
int;  when applied to ([3], fun y -> y+1) it has type
i t li t * (i t i t) i t li tint list * (int → int) → int list.

• cons: ∀α. α * α list → α list

A user-defined function can have a polymorphic type 
only in the body of a let expression where it is the only in the body of a let expression where it is the 
let-defined name.
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Types in TOCamlyp OCaml

Expressions: consts, variables, application, abstraction, 
let  letreclet, letrec

Types (notated τ, τ’, τn, etc.) :  int | bool | …
|  τ→τ’  (for any types τ and τ’) | TypeVar|  τ→τ   (for any types τ and τ ) | TypeVar

TypeVar = α, β, …
TypeScheme (σ  σ’  etc ) = ∀α   α  τ (n ≥ 0)TypeScheme (σ, σ , etc.) = ∀α1, …, αn. τ (n ≥ 0)

(Note: TypeSchemes include types)
TypeEnv (notated Γ): map from variables to type TypeEnv (notated Γ): map from variables to type 

schemes
Judgments:  Γ e : τ
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Axioms of TOCaml

TOCaml has just one axiom:

(Var)    Γ(x) = σ τ ≤ σ
Γ x : τΓ x : τ

Th    C   ll d f d  There is no Const axioms; all predefined names 
are assumed to be in the initial environment 
( h h     b  b  f (which we continue to notate, by abuse of 
notation, ∅)
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Axioms of TOCaml

Understanding the Var axiom:
• If   h   hi t  i  Γ  th  • If a name has a monomorphic type in Γ, then 

this works the same as in Tsimp

If   h   l hi   h  i   • If a name has a polymorphic type, then it can 
be used at any instance of that type.  “τ≤σ” 

 “ i   i  f ” i  i  b i d means “τ is an instance of σ” – i.e. τ is obtained 
from σ by substituting types for type variables.

• The Var rule is an axiom because the 
assertions above the line are not judgments in 
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Rules of inference of TOCaml

Application and abstraction rules are the same 
  T   Al  dd l  f  las in Tsimp.  Also add rules for tuples.

(Application)   Γ e1 : τ’  → τ Γ e2 : τ’
Γ e1 e2 : τ

(Abstraction) Γ[ ] ’(Abstraction) Γ[x: τ] e : τ’
Γ fun x -> e : τ → τ’

(Tuple)  Γ e1 : τ1 Γ e2 : τ2
Γ (e e ) : *
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Example:  fst (3, true)
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Rules of inference of TOCaml

let is new:
(let)  Γ e : τ Γ[x:GENΓ(τ)] e’ : τ’ 

Γ fun x -> e : τ → τ’Γ fun x  e : τ → τ

GEN Γ(τ) means “generalize the type variables Γ( ) g yp
of τ”, i.e. make it ∀α,β,… τ.
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Example:  let f = fun x -> x 0
in f (fun y -> y+1): int( y y )
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Example:  let f = fun x -> x 0
in (f (fun y -> y+1),in (f (fun y  y 1),

f (fun n -> [n])): int * (int list)
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Notes on TOCaml

(1) As in Tsimp, the structure of a proof is completely 
determined by the syntactic structure of the expressiondetermined by the syntactic structure of the expression

(2) Judgments always assign types to expressions, never 
type schemes.  E.g. Γ fst : ∀α, β. α * β → α is not a 
valid judgment, even though Γ(fst) = ∀α, β. α * β → α
(implicitly).  Every use of a polymorphic name has a 

f  specific type.
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Generalization in the let ruleGeneralization in the let rule
In the let rule, GENΓ(τ) usually means “quantify over all 

type variables in τ ”  However, consider this case (incrtype variables in τ.   However, consider this case (incr
has type int->int):

let f = fun x -> (let g = fun y -> y x in g incr,  x)( g y y g , )
in f true

We can type-check the body of f giving x type α.  Then, g 
has type (α→β)→β, which generalizes to 
∀α,β.(α→β)→β, so g incr has type int (with α and β
b th b i  i t)  d f t   i t *   G li i  f  it both being int), and f types as int * α.  Generalizing f, it 
gets type ∀α. α→ int * α.  Now, if e contains the 
expression “f true”  it type checks   However  f actually 
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Generalization in the let rule (cont.)Generalization in the let rule (cont.)
For this reason, GENΓ(τ) actually means “quantify over all type 

variables in τ except those that occur free in Γ.”  Then, in this case:p
let f = fun x -> (let g = fun y -> y x) in g incr,

x)
i  f tin f true

if we give x type α, g has type (α→β)→β, but this generalizes to 
∀β.(α→β)→β (note there is no quantification over α). Now, g β ( β) β ( q ) , g
incr cannot be typed, because incr has type int→int, and the 
closest we can get by instantiating g’s type is α→int.  To type-
check this term  we would have to give x type int  so f would check this term, we would have to give x type int, so f would 
have type int → int*int, and the call “f true” would be a type 
error.
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References in OCaml

OCaml has references, or assignable variables.  Unlike 
most other languages  dereferencing of references has to most other languages, dereferencing of references has to 
be done explicitly.

Types:  α ref – reference to a value of type αTypes:  α ref reference to a value of type α
Operations:

ref: α → α refref: α → α ref
!: α ref → α
:= α ref * α → unit:= α ref  α → unit

We also have ; : α * β → β, which is useful only when 
doing imperative programming.
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Type-checking referencesyp g

Would like to treat these operators as polymorphic, but 
consider this example:consider this example:

let i = fun x -> x
in let fp = ref iin let fp  ref i

in (fp := not;  (!fp) 5)
i gets type ∀α.α→α, and then fp would have type g yp , p yp
∀α.(α→α) ref.  Since it is polymorphic, fp can be used 
at type (bool→bool) ref or (int→int) ref, making both 
uses in the last line type-correct.  However, the effect 
is to assign a boolean function to fp and then apply fp to 
an int
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Type-checking references (cont.)yp g ( )

Treating an expression of type α ref as a normal 
polymorphic expression has caused a serious error: an polymorphic expression has caused a serious error: an 
expression that type-checks but has a run-time type 
error.

How can the type system be fixed?
• Easiest method:  do not generalize reference g

expressions at all – make all refs monomorphic
• Method used by OCaml:  “value restriction”y
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The “value restriction”

It turns out that the problem with polymorphic refs can 
be solved by making this restriction:  the type of an be solved by making this restriction:  the type of an 
expression can be generalized only if the expression is a 
“syntactic value” – meaning, essentially, that it is either y g y
a constant or an abstraction.
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