CS 421 Lecture 22 – The OCaml type system

- ▶ Polymorphic types, i.e. "type schemes"
- Type rules polymorphism introduced by "let" expressions
- Examples
- Explaining generalization
- ▶ Reference types in OCaml
 - How they work
 - Why they break polymorphism
 - ▶ The "value restriction"

T_{OCaml} – the Ocaml type system

Main points about OCaml type system:

- Types contain variables (notated α , β , ...)
- Variables can be generalized in some circumstances; types with generalized variables are written $\forall \alpha, \beta, \dots, \tau$, and called "type schemes"
- If a variable's type is a type scheme, it can be used with any types substituted for the quantified type variables.

Example of polymorphic types (type schemes)

- fst: $\forall \alpha, \beta. \alpha * \beta \rightarrow \alpha$. When applied to (3, "ab"), it has type int * string \rightarrow int; when applied to ([3], fun y -> y+1) it has type int list * (int \rightarrow int) \rightarrow int list.
- cons: $\forall \alpha. \alpha * \alpha \text{ list} \rightarrow \alpha \text{ list}$

A user-defined function can have a polymorphic type only in the body of a let expression where it is the let-defined name.

Types in T_{OCaml}

Expressions: consts, variables, application, abstraction, let, letrec

```
Types (notated \tau, \tau', \tau_n, etc.) : int | bool | ... | \tau \rightarrow \tau' (for any types \tau and \tau') | TypeVar
```

TypeVar = α , β , ...

TypeScheme (σ , σ ', etc.) = $\forall \alpha_1, ..., \alpha_n$. τ ($n \ge 0$) (Note: TypeSchemes include types)

TypeEnv (notated Γ): map from variables to type schemes

Judgments: $\Gamma \vdash e : \tau$

Axioms of T_{OCaml}

T_{OCaml} has just one axiom:

(Var)
$$\Gamma(x) = \sigma \quad \tau \leq \sigma$$

 $\Gamma \vdash x : \tau$

There is no Const axioms; all predefined names are assumed to be in the initial environment (which we continue to notate, by abuse of notation, \emptyset)

Axioms of T_{OCaml}

Understanding the Var axiom:

- If a name has a monomorphic type in Γ , then this works the same as in T_{simp}
- If a name has a polymorphic type, then it can be used at any instance of that type. " $\tau \le \sigma$ " means " τ is an instance of σ " i.e. τ is obtained from σ by substituting types for type variables.
- The Var rule is an axiom because the assertions above the line are not judgments in the system.

Rules of inference of T_{OCaml}

Application and abstraction rules are the same as in T_{simp} . Also add rules for tuples.

(Application)
$$\Gamma \vdash e_1 : \tau' \rightarrow \tau \qquad \Gamma \vdash e_2 : \tau'$$
 $\Gamma \vdash e_1 e_2 : \tau$

(Abstraction)
$$\Gamma[x:\tau] \vdash e:\tau'$$
 $\Gamma \vdash \text{fun } x \rightarrow \tau'$

(Tuple)
$$\frac{\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash (e_1, e_2) : \tau_1 * \tau_2}$$

Example: fst (3, true)

Rules of inference of T_{OCaml}

let is new:

(let)
$$\frac{\Gamma \vdash e : \tau \qquad \Gamma[x:GEN_{\Gamma}(\tau)] \vdash e' : \tau'}{\Gamma \vdash \text{fun } x -> e : \tau \rightarrow \tau'}$$

GEN $_{\Gamma}(\tau)$ means "generalize the type variables of τ ", i.e. make it $\forall \alpha, \beta, ... \tau$.

Example: let $f = \text{fun } x \rightarrow x \ 0$ in f (fun y -> y+1): int

```
Example: let f = \text{fun } x \rightarrow x \ 0
in (f (fun y -> y+1),
f (fun n -> [n])): int * (int list)
```

Notes on T_{OCaml}

- (I) As in T_{simp} , the structure of a proof is completely determined by the syntactic structure of the expression
- (2) Judgments always assign types to expressions, never type schemes. E.g. $\Gamma \vdash \mathsf{fst} : \forall \alpha, \beta, \alpha * \beta \to \alpha$ is not a valid judgment, even though $\Gamma(\mathsf{fst}) = \forall \alpha, \beta, \alpha * \beta \to \alpha$ (implicitly). Every use of a polymorphic name has a specific type.

Generalization in the let rule

In the let rule, $GEN_{\Gamma}(\tau)$ usually means "quantify over all type variables in τ ." However, consider this case (incr has type int->int):

let $f = \text{fun } x \rightarrow (\text{let } g = \text{fun } y \rightarrow y \times \text{in } g \text{ incr}, x)$ in f true

We can type-check the body of f giving x type α . Then, g has type $(\alpha \rightarrow \beta) \rightarrow \beta$, which generalizes to $\forall \alpha, \beta.(\alpha \rightarrow \beta) \rightarrow \beta$, so g incr has type int (with α and β both being int), and f types as int * α . Generalizing f, it gets type $\forall \alpha. \alpha \rightarrow$ int * α . Now, if e contains the expression "f true", it type checks. However, f actually requires that x be of type int.

Generalization in the let rule (cont.)

For this reason, $GEN_{\Gamma}(\tau)$ actually means "quantify over all type variables in τ except those that occur free in Γ ." Then, in this case:

let
$$f = \text{fun } x \rightarrow (\text{let } g = \text{fun } y \rightarrow y x) \text{ in } g \text{ incr},$$

x)

in f true

if we give x type α , g has type $(\alpha \rightarrow \beta) \rightarrow \beta$, but this generalizes to $\forall \beta.(\alpha \rightarrow \beta) \rightarrow \beta$ (note there is no quantification over α). Now, g incr cannot be typed, because incr has type int \rightarrow int, and the closest we can get by instantiating g's type is $\alpha \rightarrow$ int. To type-check this term, we would *have* to give x type int, so f would have type int \rightarrow int*int, and the call "f true" would be a type error.

References in OCaml

OCaml has references, or assignable variables. Unlike most other languages, dereferencing of references has to be done explicitly.

Types: α ref – reference to a value of type α

Operations:

ref: $\alpha \rightarrow \alpha$ ref

 $!: \alpha \text{ ref} \rightarrow \alpha$

 $:= \alpha \operatorname{ref} * \alpha \rightarrow \operatorname{unit}$

We also have ; : $\alpha * \beta \rightarrow \beta$, which is useful only when doing imperative programming.

Type-checking references

Would like to treat these operators as polymorphic, but consider this example:

```
let i = fun x -> x
in let fp = ref i
  in (fp := not; (!fp) 5)
```

i gets type $\forall \alpha.\alpha \rightarrow \alpha$, and then fp would have type $\forall \alpha.(\alpha \rightarrow \alpha)$ ref. Since it is polymorphic, fp can be used at type (bool \rightarrow bool) ref or (int \rightarrow int) ref, making both uses in the last line type-correct. However, the effect is to assign a boolean function to fp and then apply fp to an int.

Type-checking references (cont.)

Treating an expression of type α ref as a normal polymorphic expression has caused a serious error: an expression that type-checks but has a run-time type error.

How can the type system be fixed?

- Easiest method: do not generalize reference expressions at all – make all refs monomorphic
- Method used by OCaml: "value restriction"

The "value restriction"

It turns out that the problem with polymorphic refs can be solved by making this restriction: the type of an expression can be generalized only if the expression is a "syntactic value" – meaning, essentially, that it is either a constant or an abstraction.