
CS 421 Lecture 21 – Proof systems

Defining proof systems
JudgmentsJudgments
Axioms
Rules of inference
Proofs

Tsimp: Simple proof system for types in OCaml
OSsimp: Simple proof system for operational semantics of
OCaml

Lecture 18

Proof systems

Proof system: formalized representation of mathematical
proofs based on axioms and rules of inference.proofs based on axioms and rules of inference.
Can be used to formalize deductions for many purposes

Type-checking axioms and rules of inference allow proofs yp g p
of assertions (a.k.a. “judgments”) of the form “expression e
has type τ”.
Operational semantics rules allow proofs of judgments of Operational semantics rules allow proofs of judgments of
the form “e evaluates to v”.
Axiomatic semantics rules allow proofs of judgments of
the form “If the variables in a program initially satisfy some
conditions C, then after executing statement S, they will
satisfy conditions C’ ”.

Lecture 18

Proof systems

To define a proof system, we need to define three things:
Judgments: A judgment is an assertion whose truth is Judgments: A judgment is an assertion whose truth is
subject to proof.
Axioms: Judgments that are assumed to be true without J g
proof. There are usually an infinite number of axioms,
so they can’t all be listed, but they need to be described
i W i in some way. Written:
Rules of inference: Rules that allow you to infer a
judgment from one or more previously-inferred

J

judgment from one or more previously-inferred
judgments. Written: 1 ... nJ J

J

Lecture 18

J

Proofs

Given a proof system, a proof is a tree labeled with
judgments, such that:judgments, such that:

- Every judgment labeling a leaf node is an axiom
- Every judgment labeling an internal node can be inferred y j g g

from its children by a rule of inference.

Notational notes:
1. Axioms and rules of inference are usually given names,

and these names are placed in the proof tree
2. Proof trees are written with the root – the main

judgment being proved at the bottom

Lecture 18

judgment being proved at the bottom.

Tsim – simplified Ocaml type systemTsimp simplified Ocaml type system

Types: int | τ→τ’ (for any types τ and τ’)yp | (y yp)

Type environments Γ: mapping from variables Type environments Γ: mapping from variables
to types

Judgments: :e τΓ

Lecture 18

Tsim – simplified Ocaml type systemTsimp simplified Ocaml type system

Axioms:
(C) (Const) 0 : intΓ 1: intΓ

: int int intΓ + → →
(and man more)

(Var)

(and many more)

(Var) :x xΓ Γ

Lecture 18

Tsim – simplified Ocaml type systemTsimp simplified Ocaml type system

Rules of inference:
(Application) 1 2

1 2

: ' :
: '

e e
e e

τ τ τ
τ

Γ → Γ
Γ 1 2 :e e τΓ

(Abstraction) [:] : 'x eτ τΓ(Abstraction) [:] :
fun -> : '

x e
x e
τ τ

τ τ
Γ

Γ →

Lecture 18

Example: fun x -> fun y -> (+ x) y : int→int →int

Lecture 18

Example: fun g -> g(fun x -> + x 1): ((int→int) →int) →int

Lecture 18

Notes on TsimpNotes on Tsimp

(1) Given Γ, e, and τ, the structure of the proof tree is
completely determined by e – it is the same as the completely determined by e it is the same as the
abstract syntax. The content of the proof tree is
almost completely determined by e and τ; however, in
the application rule, even given Γ, e1, e2, and τ’, τ is not
uniquely determined.

(2) Proving is called type checking Finding τ:e τ∅(2) Proving is called type checking. Finding τ
such that can be proved is called type
inference.

:e τ∅
:e τ∅

Lecture 18

OSsim – simplified Ocaml operational semanticsOSsimp simplified Ocaml operational semantics

The operational semantics of a language says, in an
abstract way how programs in a language are executed abstract way, how programs in a language are executed.

For a functional language like Ocaml, the operational
semantics should say how expressions are evaluated semantics should say how expressions are evaluated.

E.g. “(fun x -> x*x) 4” evaluates to “16”.

To simplify the formal presentation, we will take
the view that the evaluation of an expressionthe view that the evaluation of an expression
involves transforming it to another, simpler
expression.

Lecture 18

OSsim – simplified Ocaml operational semanticsOSsimp simplified Ocaml operational semantics

We give the operational semantics of a very simplified
Ocaml as a proof system We need to define the Ocaml as a proof system. We need to define the
judgments of the system, and then give the axioms and
rules of inference.rules of inference.

Expressions (simplified Ocaml): constants, variables,
fun x -> e, e1 e2,

Values: constants, closed abstractions (i.e. fun x -> e,
where e has no free variables other than x))

Judgments: (where e is closed)e v⇓

Lecture 18

OSsim – simplified Ocaml operational semanticsOSsimp simplified Ocaml operational semantics

Axioms:
⇓ for constants kAxioms:

(Const) k k⇓ for constants k

(Abstr)
fun -> fun -> x e x e⇓

(fun x -> e
closed)

Lecture 18

OSsim – simplified Ocaml operational semanticsOSsimp simplified Ocaml operational semantics

Rule of inference:
(Application)

1 2fun -> e ' ['/]e x e v e v x v⇓ ⇓ ⇓1 2

1 2

fun > e [/] e x e v e v x v
e e v

⇓ ⇓ ⇓
⇓

(δ rules)
1 1 2 2 1 2ee v v v v v⇓ ⇓ = ⊕1 1 2 2 1 2

1 2

 e e v v v v v
e e v

⇓ ⇓ = ⊕
⊕ ⇓

Lecture 18

where ⊕ is any built-in function

Example: + (+3 4) 5 ⇓ 12

Lecture 18

Example: (fun x -> + x x)(+ 3 4) ⇓ 14

Lecture 18

Example: (fun f -> f (fun x -> x))(fun y -> y) 4 ⇓ 4

Lecture 18

Notes on OSsimpNotes on OSsimp

(1) The structure of the proof tree for e⇓v is similar to the
structure of e, but not the same. (It would be less structure of e, but not the same. (It would be less
similar if our language had recursion.)

(2) However, the proof tree – structure and content – are
completely, unambiguously determined by the
expression e. There is no intelligence or insight
required; building the proof tree is completely required; building the proof tree is completely
mechanical.

Lecture 18

Preview of following lecturesPreview of following lectures
Will present more complex and realistic proof systems for

type-checking and operational semantics of OCaml.type checking and operational semantics of OCaml.
(1) Type system

Polymorphism and the special role of “let”.y p p
Type-checking of references (i.e. assignable variables)

(2) Operational semantics
Handling recursion

Lecture 18

