
CS 421 Lecture 21 – Proof systems

Defining proof systems
JudgmentsJudgments
Axioms
Rules of inference
Proofs

Tsimp: Simple proof system for types in OCaml
OSsimp: Simple proof system for operational semantics of 
OCaml
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Proof systems

Proof system:  formalized representation of mathematical 
proofs based on axioms and rules of inference.proofs based on axioms and rules of inference.
Can be used to formalize deductions for many purposes

Type-checking axioms and rules of inference allow proofs yp g p
of assertions (a.k.a. “judgments”) of the form “expression e
has type τ”.
Operational semantics rules allow proofs of judgments of Operational semantics rules allow proofs of judgments of 
the form “e evaluates to v”.
Axiomatic semantics rules allow proofs of judgments of 
the form “If the variables in a program initially satisfy some 
conditions C, then after executing statement S, they will 
satisfy conditions C’ ”.
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Proof systems

To define a proof system, we need to define three things:
Judgments: A judgment is an assertion whose truth is Judgments: A judgment is an assertion whose truth is 
subject to proof.  
Axioms:  Judgments that are assumed to be true without J g
proof.   There are usually an infinite number of axioms, 
so they can’t all be listed, but they need to be described 
i     W i   in some way.  Written:  
Rules of inference:  Rules that allow you to infer a 
judgment from one or more previously-inferred 

J

judgment from one or more previously-inferred 
judgments.   Written:  1 ... nJ J

J
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Proofs

Given a proof system, a proof is a tree labeled with 
judgments, such that:judgments, such that:

- Every judgment labeling a leaf node is an axiom
- Every judgment labeling an internal node can be inferred y j g g

from its children by a rule of inference.

Notational notes:
1. Axioms and rules of inference are usually given names, 

and these names are placed in the proof tree
2. Proof trees are written with the root – the main 

judgment being proved at the bottom
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Tsim – simplified Ocaml type systemTsimp simplified Ocaml type system

Types:  int |  τ→τ’  (for any types τ and τ’)yp | ( y yp )

Type environments Γ:  mapping from variables Type environments Γ:  mapping from variables 
to types

Judgments:  :e τΓ
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Tsim – simplified Ocaml type systemTsimp simplified Ocaml type system

Axioms:
(C )  (Const)  0 : intΓ 1: intΓ

: int int intΓ + → →
(and man more)

(Var)  

(and many more)

(Var)  :x xΓ Γ
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Tsim – simplified Ocaml type systemTsimp simplified Ocaml type system

Rules of inference:
(Application)  1 2

1 2

: ' :
: '

e e
e e

τ τ τ
τ

Γ → Γ
Γ 1 2 :e e τΓ

(Abstraction)  [ : ] : 'x eτ τΓ(Abstraction)  [ : ] :
fun  -> : '

x e
x e
τ τ

τ τ
Γ

Γ →
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Example:  fun x -> fun y -> (+ x) y : int→int →int
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Example: fun g -> g(fun x -> + x 1): ((int→int) →int) →int
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Notes on TsimpNotes on Tsimp

(1) Given Γ, e, and τ, the structure of the proof tree is 
completely determined by e – it is the same as the completely determined by e it is the same as the 
abstract syntax.  The content of the proof tree is 
almost completely determined by e and τ; however, in 
the application rule, even given Γ, e1, e2, and τ’, τ is not 
uniquely determined.

(2) Proving is called type checking   Finding τ:e τ∅(2) Proving is called type checking.  Finding τ
such that                can be proved is called type 
inference.

:e τ∅
:e τ∅
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OSsim – simplified Ocaml operational semanticsOSsimp simplified Ocaml operational semantics

The operational semantics of a language says, in an 
abstract way  how programs in a language are executed  abstract way, how programs in a language are executed. 

For a functional language like Ocaml, the operational 
semantics should say how expressions are evaluated   semantics should say how expressions are evaluated.  

E.g. “(fun x -> x*x) 4” evaluates to “16”.

To simplify the formal presentation, we will take 
the view that the evaluation of an expressionthe view that the evaluation of an expression 
involves transforming it to another, simpler 
expression.
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OSsim – simplified Ocaml operational semanticsOSsimp simplified Ocaml operational semantics

We give the operational semantics of a very simplified 
Ocaml as a proof system   We need to define the Ocaml as a proof system.  We need to define the 
judgments of the system, and then give the axioms and 
rules of inference.rules of inference.

Expressions (simplified Ocaml):  constants, variables,
fun x -> e, e1 e2,

Values: constants, closed abstractions (i.e. fun x -> e, 
where e has no free variables other than x))

Judgments:             (where e is closed)e v⇓
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OSsim – simplified Ocaml operational semanticsOSsimp simplified Ocaml operational semantics

Axioms:
⇓ for constants kAxioms:

(Const) k k⇓ for constants k

(Abstr)
fun  -> fun  -> x e x e⇓

(fun x -> e 
closed)
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OSsim – simplified Ocaml operational semanticsOSsimp simplified Ocaml operational semantics

Rule of inference:
(Application) 

1 2fun -> e ' [ '/ ]e x e v e v x v⇓ ⇓ ⇓1 2

1 2

fun  >      e      [ / ]  e x e v e v x v
e e v

⇓ ⇓ ⇓
⇓

(δ rules)
1 1 2 2 1 2ee v v v v v⇓ ⇓ = ⊕1 1 2 2 1 2

1 2

    e       e v v v v v
e e v

⇓ ⇓ = ⊕
⊕ ⇓
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Example:  + (+3 4) 5 ⇓ 12
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Example:  (fun x -> + x x)(+ 3 4) ⇓ 14
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Example:  (fun f -> f (fun x -> x))(fun y -> y) 4 ⇓ 4
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Notes on OSsimpNotes on OSsimp

(1) The structure of the proof tree for e⇓v is similar to the 
structure of e, but not the same.  (It would be less structure of e, but not the same.  (It would be less 
similar if our language had recursion.)

(2) However, the proof tree – structure and content – are 
completely, unambiguously determined by the 
expression e.  There is no intelligence or insight 
required; building the proof tree is completely required; building the proof tree is completely 
mechanical.
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Preview of following lecturesPreview of following lectures
Will present more complex and realistic proof systems for 

type-checking and operational semantics of OCaml.type checking and operational semantics of OCaml.
(1) Type system

Polymorphism and the special role of “let”.y p p
Type-checking of references (i.e. assignable variables)

(2) Operational semantics
Handling recursion

Lecture 18


