CS 421 Lecture 20 — Dynamically-typed
languages

» Static vs. dynamic typing
» Implementation
» Example: “XL”

» Overview

» Implementation — front-end and back-end

» Efficiency



Dynamically-typed languages

Compiler does not check programs for possible
run-time type errors; they are detected at run

time.
1960: Lisp, APL
1970’s: Smalltalk
1990’s: Perl, Python, JavaScript, Ruby
Used mainly for “scripting” — i.e. small programs
Advantage: convenience
Disadvantage: inefficiency; no type-checking



Static vs. dynamic typing

Static typing: Programs are checked before execution to
determine the type of each expression. Thus, in an
expression el®el, it is known before execution exactly
what operation @ is. (E.g. “+” in Java)

Dynamic typing: Programs are not checked. At run time,
values have associated type tags, and these are used to
determine what operation is meant. (E.g. “+” in Python).

Important distinctions:

e Types of expressions vs. types of values

e Static types vs. explicit types



Why static typing?
* Types are a “sanity check” on program.

e Since operations can be selected at compile
time, more efficient.



Why dynamic typing!?
e Convenience

e E.g. can use lists to represent all kinds of
structured data, without needing
additional type declarations.

* Most dynamically-typed languages have
libraries — e.g. reg. expr.’s, graphics, I/O —
that are much easier to use than typical
APls of statically-typed languages.



Example: LISP (“LISt-Processing”)
 Fully parenthesized notation

* Values: numbers, symbols, pairs, “nil”, lists
(Technically, lists not a separate type: they are
defined as either nil or pairs whose second
element is a list; special notation is provided: (a
b...c)=>(a, (b, ... (c, nil)...)).)

e Regular control structures, but mainly use
recursion.

* Note that lists are heterogeneous; this makes
static type-checking impossible.



Example: Python

* Lisp w/o parentheses

e Data types: numbers, strings, pairs, (heterogeneous)
lists

e Syntax: “Ordinary,” but uses indentation for
statement grouping (instead of braces), e.g.
def find (x, lis):

if lis ==1{]:
return False

elif x ==lis[0]:
return True
else:

return find(x, lis[1:])

e | ots of helpful libraries



Implementation of programming languages

Three methods: - Interpret (execute directly off AST)
- Compile to virtual machine and interpret
VM code
- Compile to target machine code

Can use any method for any language, but typically.

 Compile to machine code for highest efficiency; sacrifice
portability; used for conventional, statically-typed lang'’s

« Compile to VM code when efficiency Is less important; lose
efficiency; gain portability; used for dynamically-typed
languages and “managed” languages (Java, C#)

* Interpret mainly for simplicity of implementation; lose
efficiency

Dynamically-typed languages not used when efficiency is
main goal, so compilation to VM most common.



Example: “XL”

Extension language — designed to write small scripts
to control applications in the “Slice” system.

Still in development — “pre-alpha”

TL;DR: Dynamically-typed Java, w/ built-in notation
for lists; w/o objects (only static methods)



Examples

void StrokeAdd () {
currslide = StrokeNode.GetParent();
laser = Root[""LaserPointer'];
if (laser =="0On") {
laserstroke = currslide.FindChildByAttribute('LaserStroke",
"True™);

If (laserstroke !'= null)
laserstroke.Remove();
StrokeNode["LaserStroke"] = "True";
¥
StrokeNode["Author"] = Root["UserName"];
StrokeNode["AuthorRole"] = Root["UserRole"];

}



Implementation

Written in Java (but easily transformable to C#)

Front end:
Lexer and parser generated by hand-written generators
Hand-written translation from concrete to abstract syntax
No type-checking (at present), so no symbol table

Back end:
Direct interpretation of AST



Front end — lexer generator

Lexer generator:
- Based on description of DFA

- DFA description about 100 lines; code-generating
code about 50 lines

- Sample of DFA — part of comment section:

[slash, Slash, [[oneOf("*"), inCcomment], [oneOf("/"), InCPcomment],
[oneOf("="), slasheq]]],
[slasheq, SlashEqual, []],
[iInCcomment, Error, [[notOneOf("*"), InCcomment],
[oneOf("*"), iInCcomment2]]],
[iInCcomment2, Error, [[notOneOf("*/"), iInCcomment],
[oneOf("*"), InCcomment2],
[oneOf("/"), endcomment]]],
[endcomment, Discard, []]



Front end — parser generator

Generates recursive-descent parser, using LL(1)

e LL(I) test and generator written in 200 lines of
Python

e Grammar has =150 productions (simplified from Java)

e To handle two-symbol lookahead, when needed, can
insert a predicate to help determine production to
use.

e Sample from grammar: productions from non-
terminal “statement”:



Front end — parser generator

[statement, [
[block],
[['toklis.peek(0) == tokens.Colon'], Identifier, Colon, statement],
[If, parExpression, statement, elseStmtOpt],
[For, Lparen, forstatement],
[While, parExpression, statement],
[Switch, parExpression, Lbrace, caseStmts, Rbrace],
[Return, expressionOpt, Semicolon],
[Throw, expression, Semicolon],
[Break, identifierOpt, Semicolon],
[Continue, identifierOpt, Semicolon],
[expression, Semicolon],

[Semicolon]

11



CST = AST

Hand-written translation.

AST is generic tree type, where each node has a name,
i.e. abstract syntax operator, and then either a list of
children or a token value (e.g. integer constant).

The AST operators are:

compunit, classDecl, method, formals, var, stmtlist,
exprstmt, vardecl, i1fstmt, whilestmt, returnstmt,
throwstmt, breakstmt, continuestmt, switchstmt,

casestmt, exprlist, ident, unarypreoptr, unarypostoptr,
binaryop, condexpr, subexpr, listexpr, mappair, rangeexpr



Back end

At run time, have three data structures:
AST:

Environment: Map from global variables to
values; stack of maps from local variables to
values.

Heap: Where all values reside



Values

Java class Value contains tagged values. There are 10
types of values.

public class Value {
public enum valtype {IntV, FloatVv, CharV, BooleanV,
StringV, ListV, DictVv, NullV, VoidV, ObjectV};

public valtype thetype;
public Object thevalue;

// lots of constructors/destructors, e.g.

public Value (String s) {
// Only for boolean values
thetype = valtype.StringV;
thevalue = s;

}



Execution

Class eval has fields representing global and local
environments:

public SimpleEnv globalvars;
public EnvList localenvs; // EnvList = stack of SimpleEnvs

and methods:

void execute (AST stmt) // execute stmt
Value evaluate (AST exp) // evaluate expression
LHValue evaluateLHS (AST exp) // evaluates “left-hand value” of expr



Example: Execute if statement

case 1fstmt:
vl = evaluate(children.get(0));
1T (vi.i1sTrue() == 1)
execute(children.get(1));
else
execute(children.get(2));
return Value.Void;



Example: Execute function call

AST method = find(fname, globals);
ASTLiIst formals = method.getFormals();
ValueList actuals =
evallist(children.get(l).getChildren());
SimpleEnv env = zipEnv(formals, actuals);
localenvs.addAtStart(env);
AST stmt = method.getBody();
try {
v = execute(stmt);
localenvs.removeHead();
+
catch (ReturnkException re) {
localenvs.removeHead();
return re.returnval; }



Example: Evaluate variable reference

case 1dent:
Int 11 = exp.getvVar() .hashedname();
IT (locals.contains(il))
vl = locals.valueof(in);
else
vl = globalvars.valueof(iil);
return vi;



Example: Evaluate expression w/ binary optr

case binaryop:
return applyBinop(exp.getOptr(), children.get(l),
children.get(2))

public Value applyBinop (tokens t, AST opndl, AST opnd2) {
Value v1, v2;
IT (isStrictOp(t)) {
vl = evaluate(opndl);
v2 = evaluate(opnd2);

switch (vValue.maxtype (vl1.thetype, v2.thetype)) {
case CharV:

int 1 = vli.getCharvalue();

int J = v2.getCharvalue();

return new Value(dolntop(t, 1, J));



Sources of inefficiency

e Minor: many inefficiencies in data
representations
* Major
e “Cost of interpretation”
e Boxing/unboxing/tag-checking



What to do about them

e “Cost of interpretation”

e Boxing/unboxing/tag-checking



Summary

Dynamic typing allows maximum flexibility in
determining the semantics of operations — e.g. can
convert values at run time in whatever way is likely to be
most useful to the programmer.

In practice, it is very difficult to mix dynamic and static
typing.

However, you really don’'t want to develop any large
program in a dynamically typed language.

Any of the three implementation methods can be used
for any language, but dynamically-typed languages
usually implemented by virtual machines or (less often)
direct interpretation, because maximum efficiency is not
the main goal, and these techniques are simpler and
more portable.



