
1/20/2010

1

CS421 Lecture 2
Reminder: Office Hours now posted on web page
Midterm dates: Feb. 24, April 5 (Wednesday nights)

Today’s class: Ocaml:
Types
let expressions
Scope rules
Tuples & pattern matchingTuples & pattern-matching
Lists & pattern-matching

Ocaml
Functional language – rely on expression evaluation
rather than statement execution

Heavy use of recursionHeavy use of recursion
Type inference
Dynamic memory allocation
“Higher-order functions” (will cover in second half of the
course)

1/20/2010

2

Types
Basic: int, string, …
Function: τ1→ τ2 → … → τn → τ

e int → int → inte.g. int → int → int
Later in this class: tuples, lists

Let expressions
At “top level,” use let to define variables and functions
Use “let rec” for recursive definitions, e.g.:

l t =let rec sumsqrs m =
if m=0 then 0 else m*m + sumsqrs (m-1) ;;

1/20/2010

3

Nested let definitions
let f x y = let z = sqrt(x+y)

in x * z;;

let f x y = let f ’ a = a ^ ”\n”
in f’ (x^y)

let sumsqrs n =
let rec aux m =let rec aux m =

if m>n then 0
else m*m + aux (m+1)

in aux 1;;

Scope
Set of variables accessible at a given point. We look at
Java first. Basic rule: closest enclosing declaration.

class A {
int x=3;
void foo (int x) {

System.out.println(x);
for(int i=0; i<5; i++) {

System.out.println(i);
}
System.out.println(i);

}
}

1/20/2010

4

Scope in OCaml
Basic rule is the same, e.g.

l t = 5let x = 5;;
let f x = let x = 7

in print_int x;;

Rules of scope in OCaml
Top level:

let x = … ;;

let f a = … ;;

e : let x = e1 in e2

1/20/2010

5

Rules of scope in OCaml
e : let f x = e1 in e2

e : let rec f x = e1 in e2

Mutual Recursion
Does this work?
let even n = if n=0 then true

l dd(1)else odd(n-1);;
let odd n = if n=0 then false

else even(n-1);;

1/20/2010

6

Tuples in OCaml
Consider structs in C, or classes with public fields and no
methods (and just one constructor).

Java Example:Java Example:
class Pr { public int x;

public string s;
public Pr(int x, int s) {

this.x = x; this.s = s;
}

}

Purpose: Put several values together into a single object
that can be passed to, or returned from, methods.

Tuples
In Java, clients of class Pr access elements using dot
notation:
Pr p = new Pr(3 “tim”);Pr p = new Pr(3, tim);
… p.x … p.s …

OCaml: Create pair with no class definition needed:
let p = (3, “tim”)

 fst p snd p… fst p .. . snd p

Type of p is “int * string”.
Tuples in OCaml serve same purpose as structs in C, Java.

1/20/2010

7

Tuples
Can have as many values as you wish in a tuple:

(3, “rick”, 4.0) : int * string * float

(“ted”, “bill”) : string * string

(3, (‘a’, 4)) : int * (char * int)

However, functions fst and snd work only on pairs. To define
functions on other tuples, you need…

Pattern matching
Three ways to define the same function:

let sum p = (fst p) + (snd p)
l t m (b) = +blet sum (a,b) = a+b
let sum p = let (a,b) = p in a+b
All define the same function of type int * int → int

Examples:
let fst_of_3 (x,y,z) = x;;

let incr_fst_of_3 (x,y,z) = x+1;;

1/20/2010

8

“Polymorphic” types
let fst_of_3 (x,y,z) = x;;

let incr_fst_of_3 (x,y,z) = x+1;;

Curried vs. Uncurried functions
let f x y = … x … y … curried formcurried form

let g (x,y) = … x … y … uncurried formuncurried form

1/20/2010

9

“match” expressions
Another way to use pattern-matching to define functions:
let fst_of_3 x =

match x with match x with
(a,b,c) -> a;;

But match expressions allow alternates:

let rec fib n =
match n with 0 -> 1match n with 0 -> 1

| 1 -> 1
| _ -> fib(n-2) + fib(n-1);;

Lists
Linked-lists in Java:
class List {

i t h d int head;
List tail;
static List cons (int x, List y) {

List lst = new List();
lst.head = x;
lst.tail = y;

List lst1 = List.cons(3, null);
lst1.head = 3;
List lst2 = List.cons(4, lst1);

return lst;
}

}

(,);
List lst3 = List.cons(5, lst2);

1/20/2010

10

Recursive functions in Java
List lst1 = List.cons(3, null);
lst1.head = 3;
List lst2 = List.cons(4, lst1);()

int sum (List L) {
if (L==null)
then return 0
else return L.head + sum(L.tail);

}
oror
int sum (List L) {

return L==null ? 0 : L.head+sum(L.tail);
}

Recursive functions in Java

Exercise: define Append(List x, List y)

1/20/2010

11

Lists in OCaml
Built-in data type
Syntax:

[] - empty list
[a; b; … ; c] - list with elements a, b, …, c
a :: x - list obtained by putting a on the front

of list x (“consing”)
Examples:
l l 1 []let lst1 = [];;
let lst2 = [3];;
lst1 = lst2;;
let lst3 = 5::4::lst2;;
lst3 = [5;4;3];;

Pattern-matchings on lists
let f [a;b] = …
let g (x::xs) = …
let h (x::y::xs) = …
let f x = match x with [] -> ….

| y::ys -> …

Examples:

1/20/2010

12

Lists of lists
Lists can contain anything, even other lists.
But, lists must be homogeneous – if a list contains an int,

th ll it l t t b i t if it t i i t li t then all its elements must be ints; if it contains an int list,
then all its elements must be int lists.

Which of the following are legal?
[1; 2; 3] [[1]; [2;3]] [1; [2;3]] 1 :: [2;3]

1 :: [[2;3]] [1] :: [2;3] [1] @ [2;3] [1;2] :: 31 :: [[2;3]] [1] :: [2;3] [1] @ [2;3] [1;2] :: 3

[1;2] @ 3 [1;2] @ [3] [1] :: [[2; [3]]]

Tuples vs. lists
Tuples are fixed-size, heterogenous collections

Lists are extendable, homogeneous collections

