CS 421 Lecture 18 — More examples of higher-
order functions

» Combinator programming — “parser combinators”
» Representing sets as higher-order functions
» Representing pairs as higher-order functions

» Building comparators using higher-order functions

Lecture 18



Combinator-style programming

Can write complex programs by defining a
library of higher-order functions and applying
them to one another (and to first-order or
built-in functions).

Advantage: easy of creating programs —
programs are just expressions

Example: build a parser by writing “parser
combinators”.

Lecture 18



Parser combinators

Def A parser is a function from token list -> (token list) option.

|dea is to define functions that build parsers, rather than building
parsers “by hand.”

E.g. Parser to recognize a single token:

let token s = fun cl -> if c|=[] then None
else if s=hd cl then Some (tl cl)
else None;;

let parsex = token X’;;

parsex ['X];;

parsex[‘a’];;

Lecture 18



Parser combinators

“Combinators” to combine parsers into larger parsers:

let (++) p q = fun cl -> match p cl with None -> None

| Some cl' -> q cl’;;

let parsexy = token ‘x’ ++ token ‘y’
Y]
parsexy [‘X’, ‘Z

y ¢

parsexy [X,

Lecture 18



Parser combinators

let (||) p g = fun cl -> match p cl with None -> q cl

| Some cl' -> Some cl’;;
let parsexyorz = parsexy || token ‘Z’
parsexyorz[‘x’, ‘y’]

parsexyorz ['Z']

Lecture 18



Parser combinators

Put this together to define parser for grammar:
A ->aB |b
B >cB | A

let rec parseA cl = ((token 'a' ++ parseB) || token 'b") cl

and parseB cl = ((token 'c' ++ parseB) || parseA) cl;;

ParseA [lal;lcl;lcl;lal;lbt]

Lecture 18



Representing sets as higher-order functions

Def. A setis a function from values to bool.
type intset = int -> bool
E.g. {2} = fun x -> (x=2)
{2,3} = fun x -> (x=2) or (x=3)

Set operations:

(** member: int -> intset -> bool *)

let member ns =

(* emptyset: intset *)

let emptyset =

Lecture 18



Representing sets as higher-order functions

(* add: int -> intset -> intset *)

letadd ns =

(* union: intset -> intset -> intset *)

let union sl s2 =

(* intersection: intset -> intset -> intset *)
let intersection sl s2 =

(* remove: int -> intset -> intset *)

let remove n s =

Lecture 18



Representing sets as higher-order functions

(* complement: intset -> intset *)
let complement s =
(* intsAbove: int -> intset *)

let intsAbove n =

[Note: cannot list elements]

Lecture 18



Representing pairs as higher-order functions

Def A pair is a value p with a constructor pair: o -> f3 -
> pair, and functions fst: pair -> o and snd: pair -> 3
such that fst(pair a b) = a and snd(pair a b) = b.

et pairab =

et fst p =

etsndp =

Lecture 18



Building comparators using higher-order
functions

Def A comparator is a function of type a * o -> bool.

E.g. (>) is a comparator.

(=) is a comparator.

Can build specific comparators, e.g.
fun lexorder? (x,y) (x,y’) = x<x’ or (x=x & y<Yy’);;
exorder? (‘a’,’b’) (‘a’,'c’)
exorder? (a’,'’z’) (‘b’,a’)
exorder? (‘b’,’b’) (‘a’,'c’)

Lecture 18




Building comparators using higher-order
functions

But it’s more fun to build them using higher-order
functions:

let or_comp comp| comp? = fun x y ->
(compl xy) or (comp2 x y)

let Ite = or_comp (<) (%)

let and_comp comp| comp2 = fun xy ->

(compl xy) & (comp2 x y)

Lecture 18



Building comparators using higher-order
functions

let lex _comp comp| comp2 =

fun (x,y) (X,y’) -> compl x X’ or (x=x" & comp2 yy’)

let lexorder2 = lex_comp (<) (<);;

Lecture 18



Building comparators using higher-order
functions

let lex_comp_list comp =
let rec aux lis| lis2 = match (lisl, lis2) with
([, L) -> true
| (L [0) -> false
| ((x::xX’), (Y:zy')) -> comp x y or (x=y & aux X’ y’)
in aux;;

let alphalex = lex _comp_list (<);;

Lecture 18



