
CS 421 Lecture 18 – More examples of higher-
order functionsorder functions

Combinator programming – “parser combinators”
Representing sets as higher order functionsRepresenting sets as higher-order functions
Representing pairs as higher-order functions
Building comparators using higher-order functionsBuilding comparators using higher-order functions

Lecture 18

Combinator-style programmingCombinator style programming

Can write complex programs by defining a
librar f hi her rder f ncti ns and a l in library of higher-order functions and applying
them to one another (and to first-order or
built in functions)built-in functions).

Advantage: easy of creating programs –
 j iprograms are just expressions

Example: build a parser by writing “parser
combinators”.

Lecture 18

Parser combinatorsParser combinators
Def A parser is a function from token list -> (token list) option.
Idea is to define functions that build parsers rather than building Idea is to define functions that build parsers, rather than building

parsers “by hand.”

E.g. Parser to recognize a single token:

let token s = fun cl -> if cl=[] then Nonelet token s = fun cl -> if cl=[] then None
else if s=hd cl then Some (tl cl)
else None;;;;

let parsex = token ‘x’;;
parsex [‘x’];;

Lecture 18

parsex[‘a’];;

Parser combinatorsParser combinators
“Combinators” to combine parsers into larger parsers:

let (++) p q = fun cl -> match p cl with None -> None
| Some cl' -> q cl';;| q

let parsexy = token ‘x’ ++ token ‘y’
parsexy [‘x’, ‘y’]
parsexy [‘x’, ‘z’]

Lecture 18

Parser combinatorsParser combinators

let (||) p q = fun cl -> match p cl with None -> q cl
| Some cl' -> Some cl';;

let parsexyorz = parsexy || token ‘z’
parsexyorz[‘x’, ‘y’]
parsexyorz [‘z’]

Lecture 18

Parser combinatorsParser combinators
Put this together to define parser for grammar:

A > aB | bA -> aB | b
B -> cB | A

let rec parseA cl = ((token 'a' ++ parseB) || token 'b') cl
and parseB cl = ((token 'c' ++ parseB) || parseA) cl;;p ((p) || p)

parseA ['a';'c';'c';'a';'b‘]

Lecture 18

Representing sets as higher-order functionsRepresenting sets as higher order functions
Def. A set is a function from values to bool.
type intset = int > booltype intset = int -> bool
E.g. {2} = fun x -> (x=2)

{2 3} = f > (=2) (=3){2,3} = fun x -> (x=2) or (x=3)
Set operations:

(* b i > i > b l *)(* member: int -> intset -> bool *)
let member n s =
(* *)(* emptyset: intset *)
let emptyset =

Lecture 18

Representing sets as higher-order functionsRepresenting sets as higher order functions
(* add: int -> intset -> intset *)
let add n s =let add n s =
(* union: intset -> intset -> intset *)
l t i 1 2 =let union s1 s2 =
(* intersection: intset -> intset -> intset *)
l i i 1 2 let intersection s1 s2 =
(* remove: int -> intset -> intset *)
l let remove n s =

Lecture 18

Representing sets as higher-order functionsRepresenting sets as higher order functions
(* complement: intset -> intset *)
let complement s =let complement s =
(* intsAbove: int -> intset *)
l t i t Ab =let intsAbove n =

[Note: cannot list elements]

Lecture 18

[Note: cannot list elements]

Representing pairs as higher-order functionsRepresenting pairs as higher order functions
Def A pair is a value p with a constructor pair: α -> β -

> pair and functions fst: pair -> α and snd: pair -> β> pair, and functions fst: pair -> α and snd: pair -> β
such that fst(pair a b) = a and snd(pair a b) = b.

l t i b =let pair a b =

let fst p =

let snd p =

Lecture 18

Building comparators using higher-order
functionsfunctions
Def A comparator is a function of type α * α -> bool.

E.g. (>) is a comparator.
(=) i t(=) is a comparator.

C b ild ifi Can build specific comparators, e.g.
fun lexorder2 (x,y) (x’,y’) = x<x’ or (x=x’ & y<y’);;

l d 2 (‘ ’ ’b’) (‘ ’ ’ ’)lexorder2 (‘a’,’b’) (‘a’,’c’)
lexorder2 (‘a’,’z’) (‘b’,’a’)

Lecture 18

lexorder2 (‘b’,’b’) (‘a’,’c’)

Building comparators using higher-order
functionsfunctions
But it’s more fun to build them using higher-order

functions:functions:

let or comp comp1 comp2 = fun x y >let or_comp comp1 comp2 = fun x y ->
(comp1 x y) or (comp2 x y)

let lte = or comp (<) (=)let lte = or_comp (<) (=)

let and comp comp1 comp2 = fun x y >let and_comp comp1 comp2 = fun x y ->
(comp1 x y) & (comp2 x y)

Lecture 18

Building comparators using higher-order
functionsfunctions
let lex_comp comp1 comp2 =

fun (x y) (x’ y’) -> comp1 x x’ or (x=x’ & comp2 y y’)fun (x,y) (x ,y) > comp1 x x or (x x & comp2 y y)

let lexorder2 = lex_comp (<) (<);;_ p () ()

Lecture 18

Building comparators using higher-order
functionsfunctions
let lex_comp_list comp =

let rec aux lis1 lis2 = match (lis1 lis2) withlet rec aux lis1 lis2 match (lis1, lis2) with
([], _) -> true

| (_, []) -> false| (_ [])
| ((x::x’), (y::y’)) -> comp x y or (x=y & aux x’ y’)

in aux;;
let alphalex = lex_comp_list (<);;

Lecture 18

