## CS 42I Lecture I5

- Today's class: APL
- Functional programming - "no side effects"


## Functional Programming

"The assignment statement splits programming into two worlds. The first world comprises the right sides of assignment statements. This is an orderly world of expressions, a world that has useful algebraic properties.... It is the world in which most useful computation takes place.
"The second world... is the world of statements. ... This world of statements is a disorderly one, with few useful mathematical properties."
John Backus (creator of Fortran), "Can Programming be liberated from the von Neumann Style? A Functional Style and its Algebra of Programs." Turing Award lecture, 1977.

## APL

Computations on matrices using operators that have matrix arguments.
Ken Iverson - "A Programming Language" - 1960
Defined a set of operators on matrices, plus a typeface for those operators, and built terminals

## APL operations

- Binary operations on numbers extended naturally to matrices
- Comparison and boolean ops treated as arithmetic

Reduction operations: + , × , ソ , $\ldots$

- For vectors, put operator between every element
- For matrices, reduce each row

Compression: B / V

- selects elements (or rows) of $V$ where $B=I$


## APL font

ABCDEFGHIJ KLMNOPQRSTUMWKYZ 0123456789


Lecture 15

$$
\begin{aligned}
& \text { APL examples } \\
& 1+M \\
& (+V) \div n \\
& (+V) \div 1 \Delta V \\
& (((V \div 2) \times 2)=V) / V
\end{aligned}
$$

## APL examples

```
pri me n = ソ(O-n%/& 1+1/4 n- 2)))
```


## APL examples

- Subscripting: $V\left[V^{\prime}\right]$ - elements of $\vee$ in positions given by $\mathrm{V}^{\prime}$.
reverse $V=V[1+(1 / \lambda)-1 / A \lambda]$

Lecture 15

## APL examples

" Dyadic ½-"restructure"

- V1/A returns a value with shape $V$, values drawn from A


## APL examples

- ,, assignment
- ${ }^{3}$ transpose

$$
\left({ }^{3} M\right)=M,\left(2^{1 / 117}\right)^{1 / 2 / 17}
$$

## APL examples

let zero = newint 0;
let four = newint 4;;
let a = rho(newveci [2;3]) (indx (newint 6));;
let $\mathrm{v}=$ newveci $[2 ; 4 ; 6] ;$;
let c = newveci [1;0];;
let d = newveci [1;0;1];;
a *@ a
v-@ one
a >@ four
!+v

Lecture 15

## APL examples

$\operatorname{maxR} \mathrm{a}$
d \% v
c \% a
shape a
ravel a
rho (shape a) v
rho (shape v) c
a^@ c

Lecture 15

## APL examples

indx (newint 5)
trans a
v @@ (indx two)
a @@ one
(trans a) @@ (indx two)

Lecture 15

## APL examples

let incr a = a + @ (newint 1); ;
let fac $n=!^{*}$ (indx n);
let avg v = (!+v) /@ (shape v);;
let reverse $\mathrm{v}=$
let sz=(shape v) @@ one in v @@ (incr (sz-@ (indx sz)));;
let prime n = !\& (zero <>@ (n \%@ (incr (indx (n -@ two)))));;

Lecture 15

