
2/24/2010

1

CS 421 Lecture 11
Compilation and execution

Compilers
E ti f t ti lExecution of static languages
Code optimization – why?
Code generation
Code optimization – how?

Tuesday’s class: more compilation
Thursday’s class: execution of dynamic languages – tagged

Lecture 3

Thursday s class: execution of dynamic languages tagged
values, “just-in-time” code generation, garbage collection,
reflection

Compiler structure

Lecture 3

2/24/2010

2

Run-time environment – memory layout

Lecture 3

Run-time environment – stack structure

Lecture 3

2/24/2010

3

Run-time environment – heap structure

Lecture 3

Code optimization - example
Just to show effect of code optimization, here’s a C
program:

f () {
int i, j, k;

i = (j+1)*(k-1);

printf("%d", i);

}

Lecture 3

}

2/24/2010

4

Code produced from C compiler
_f:

pushl %ebp
movl %esp, %ebp
subl $24, %esp
movl -8(%ebp), %edx
incl %edx
movl -12(%ebp), %eax
decl %eax
imull %edx, %eax
movl %eax, -4(%ebp)
movl -4(%ebp) %eax

Lecture 3

movl -4(%ebp), %eax
movl %eax, 4(%esp)
movl $LC0, (%esp)
call _printf
leave
ret

Code produced from C compiler with –O4

_f:
pushl %ebppushl %ebp
decl %edx
incl %eax
imull %edx, %eax
movl %esp, %ebp
subl $8, %esp
movl $LC0, (%esp)
movl %eax, 4(%esp)

Lecture 3

call _printf
leave
ret

2/24/2010

5

Translation to IR
Different types of intermediate representations

Stack machine
3 dd i t ti3-address instructions
2-address instructions
Various graph structures showing control flow and data
dependencies

Consider translation to 3-address form:
[S] : Statement -> instruction list

Lecture 3

[e] : Expression -> instruction list * location
(At this stage, are not thinking about machine registers. Just
give every location a name. In later stage, decide whether
value will go in memory, in register, or on stack.)

Translation to IR
Will give a number of translation schemes, showing how
to translate different expressions and statement to
intermediate form. (We will not translate to any actual

hi l b hi l lik IR machine language, but machine languages are like our IR,
just more complicated.)
Will present code sequences either stacked vertically (as
is usually done for assembly language), or horizontally
separated by semicolons: instr1

instr2 or instr1; instr2; ... instrn

Lecture 3

Will often write [e] or [S] in the middle of an instruction
sequence: splice the instructions given by [e] or [S] into
the instruction sequence.

...
instrn

2/24/2010

6

Translation to IR
Here, assume a three-address IR with machine
instruction-like instructions (but simpler). These include:

loc = loc + loc (or -, *, /, <, >, ==, &&, ||, etc. All
including boolean operations – operate on numbers)

JUMP label
CJUMP v, label1, label2 (jump if v = 1)
PUSH v (push value or loc onto stack)
CALL f (jump to function f after adjusting pointers)

Lecture 3

CALL f (jump to function f, after adjusting pointers)
RET
LOADIND v (load from memory location given by v)

References to variables implicitly get them from the stack.

Referencing variables
References to variables implicitly get values from the stack.

Unlike real machine language, will not use explicit offsets Unlike real machine language, will not use explicit offsets
from frame pointer – but that is how these references
would be implemented in machine language.

In machine language, inside function definition
void f (int x, double y, …) { char c; … }

Lecture 3

(y) { }
x, y, c, etc. would occupy specific locations in the stack

frame (chosen by compiler). References in the body of f
would use those offsets. As a simplification, we will
simply refer to their locations as x, y, c, etc.

2/24/2010

7

Translation to IR
Expressions. Recall, [e] return a pair consisting of a
sequence of (zero or more) instructions, and a location.
[] (t t) = l t t = l ti ()[n] (n a constant) = let t = newlocation()

in (“t = n”, t)

[x] (x a variable) = (“”, x)

[e1 + e2] = let (I1, t1) = [e1]

Lecture 3

[e1 e2] let (I1, t1) [e1]
(I2, t2) = [e2]
t3 = new location()

in (I1 ; I2 ; t3 = t1+t2 , t3)

Translation to IR
Statements:

[x = e] = let (I, t) = [e]
in I ; x=t

[{S1; S2; … ; Sn}] = [S1]
[S2]

Lecture 3

.

.

.
[Sn]

2/24/2010

8

Translation to IR
[if e then S1 else S2] =

let (I, t) = [e]
L1 L2 L3 = newlabels()L1, L2, L3 = newlabels()

in I
CJUMP v, L1, L2

L1: [S1]
JUMP L3

L2: [S2]
L3

Lecture 3

L3:

Translation to IR
[while e do S1] =

let (I, t) = [e]
L1 L2 L3 = newlabels()L1, L2, L3 = newlabels()

in JUMP L2
L1: [S1]
L2: I

CJUMP v, L1, L3
L3:

Lecture 3

2/24/2010

9

Translation to IR
[f(e1, …, en)] =

let (Ii, ti) = [ei], for all i
in Iin I1

PUSH t1
.
.

In
PUSH tn
CALL f

Lecture 3

CALL f

