CS 421 Lecture ||

» Compilation and execution
Compilers
Execution of static languages
Code optimization — why!
Code generation
Code optimization — how!

Tuesday's class: more compilation

Thursday's class: execution of dynamic languages — tagged
values, "just-in-time” code generation, garbage collection,
reflection

Lecture 3

Compiler structure
44 Frad 2o lﬁ;j}
L S~

/—-_@

W, fale 2.9 ~
'l': ~T_ hc_L"‘"’\
Lectur / (L Mac bhavar ,095\— T&
"'Tevm .:Lnr_.,t US aa Cs ') Vv (A
- m,&r‘(?a“‘S{LE[L < — WG
? - SXess e ek

Run-time environment — memory layout

OxFEFFFFFFP
0xB0000000
0xTFFFFFEE

Stack Segment

t

Data Segment
0x10000000

Text Segment
oxo0d400000 | -

o REAREG S L

0x00000000 O - n T, o0 m St

» Lecture3

Run-time environment — stack structure

FP

7

Stack before

mut'nl:

£

SP

i

Local variables

7

Stack grows
down

7y
C a
routine

Local varnaties

Parameters

Rewnaddress

FP—an-

Previous FP

SP

Local variables

;

Stack grows
down

Y

Stack
frame

» Lecture3

Run-th&ﬁvi&m@&[\ Lur
— —

=
gé/////;{/ £ -

Lecture 3

Code optimization - example

» Just to show effect of code optimization, here's a C
program:

fO{

inti,j, k;
i = (j+1)*(k-1);

printf("%d", i);

Lecture 3

Code produced from C compiler

pushl %eebp

movl %esp, %eebp
subl $24, %esp

movl -8(%ebp), Peedx

incl %eedx

movl -12(%ebp), %eeax
decl Zeeax

imull Zeedx, Yoeax

movl Yeeax, -4(%eebp)
movl -4(%ebp), Joeax
movl Yeeax, 4(Yoesp)
movl $LCO, (%eesp)
call _printf

leave

ret

Lecture 3

Code produced from C compiler with —O4

f:
pushl %ebp
decl Toedx
incl Yoeax
imull Yoedx, Yoeax

movl %eesp, Yoebp
subl $8, %eesp

movl $LCO, (Zeesp)
movl %eax, 4(%esp)
call _printf

leave

ret

Lecture 3

Translation to IR

» Different types of intermediate representations
» Stack machine
3-address instructions

v

2-address instructions

Various graph structures showing control flow and data
dependencies

» Consider translation to 3-address form:
» [S]: Statement -> instruction list

v v

» [e]: Expression -> instruction list * location

» (At this stage, are not thinking about machine registers. Just
give every location a name. In later stage, decide whether
value will go in memory, in register, or on stack.)

» Lecture3

Translation to IR

»

Will give a number of translation schemes, showing how
to translate different expressions and statement to
Intermediate form. (Ve will not translate to any actual
machine language, but machine languages are like our IR,
just more complicated.)

Will present code sequences either stacked vertically (as
Is usually done for assembly language). or horizontally
separated by semicolons: instr,
NSt o instr :instrs;... instr,
instr,,
Will often write [e] or [S] in the middle of an instruction
sequence: splice the instructions given by [e] or [S] into
the instruction sequence.

Lecture 3

Translation to IR

» Here, assume a three-address IR with machine
Instruction-like instructions (but simpler). These include:

loc = loc + loc (or -, * [, <, > == && |[|. etc. All
iIncluding boolean operations — operate on numbers)
JUMP label

CJUMP v, labell, label2 (jump ifv = 1)
PUSH v (push value or loc onto stack)

CALLf (Jump to function f, after adjusting pointers)
RET
LOADIND v (load from memory location given by v)

References to variables implicitly get them from the stack.

Lecture 3

Referencing variables

References to variables implicitly get values from the stack.

Unlike real machine language, will not use explicit offsets
from frame pointer — but that is how these references
would be implemented in machine language.

In machine language, inside function definition
void f (int x, double y, ...) { char ¢ ... }

X, Y, ¢, etc. would occupy specific locations in the stack
frame (chosen by compiler). References in the body of f
would use those offsets. As a simplification, we will

simply refer to their locations as x, y, c, etc.
Lecture 3

Translation to IR

» Expressions. Recall [e] return a pair consisting of a
sequence of (zero or more) instructions, and a location.

» [n] (n a constant) = let t = newlocation()

in (‘t=n"t) X+ |
[?J El (mr) 7)
[3= (=17, &)

» [el +e2]=let(l,. t,)=[el] H:—n,—ig:x—vi‘—)

» [x] (x avariable) = ("7, %)

(lp) =[e2]
t; = new location()
n(sl 3=+, ty)

I

g

Lecture 3

Translation to IR

» Statements:

r[x=e]=let(lLt)=[e]
in | x=t

» [{S1:52;...:Sn}]= [SI]

Lecture 3

Translation to IR

» [ife then Sl else S2] =
let (I, t)=[e]
LI, L2, L3 = newlabels()
in |
cjumMpP % LI, L2

LI: [SI]
JUMP L3
L2: [S2]

L3:

Lecture 3

Translation to IR

» [while e do SI] =

let (I, t)=[e]
L1, L2, L3 = newlabels()
in JUMP L2
LI: [S1]
L2: |
CJUMP % LI, L3
L3:

Lecture 3

ukj—l (K-?d)?
lj: D-t-rx’;
X = ?&-'"
5

(J- 31-—1: [] {‘f-—-O -t‘)
X = ?‘" *:D
‘) ot b b)
gy, - L
Y{;:g(-,.& ,) \ ’J‘uﬂi’ L
[y-g+x) = [yexd= (% "f’” e 6 :?r”
= —] ‘j = '3
\)__ D AP) t“l:' ,
— £ T XYy
-]
{‘?(Y}.—-\-p 'tv-’,é-'r* K-t'l;' ‘K’t{) _x_.—l-g__.-
L2 t =0
1: :.‘-')("7-!:JI
C")LL\“P ’tl, U:dg

Translation to IR

» [f(el, ..., en)] =
let (I, ;) =[el], foralli
n |

PUSH t,

ln
PUSH ¢,
CALL f

Lecture 3

