
Lecture 10: LR parsing and
resolving conflicts

• What are conflicts

• Example 1: a simple, unambiguous grammar

• ocamlyacc output

• Using parse trees to understand conflict

• Fixing conflict

• Example 2: ambiguous grammar for conditional expressions

• Eliminating conflicts using %prec declarations

– Typeset by FoilTEX –

Conflicts
• ocamlyacc generates tables saying what action to take at

each point in parse

• Method is called “LALR(1)”

• “LR(1)” is a similar, but somewhat more powerful, method
— will often use “LR(1)” and “LALR(1)” as synonyms.

• Not every grammar can be parsed using this method.

• Problem is always that ocamlyacc cannot decide on the
proper action in some cases

• “Shift/reduce conflict” — cannot decide whether to shift
or reduce

• “Reduce/reduce conflict” — knows to reduce, but can’t
decide which production to use

– Typeset by FoilTEX –

Example 1

• A → B , int

B → id | id , B

• Grammar is unambiguous, but consider these two inputs:

• x,y,10

• x,y,z,10

• Both lead to an identical stack/lookahead configuration, but
the correct action in one case is shift and in the other is
reduce.

• Look at s-r parse, and at two parse trees.

– Typeset by FoilTEX –

Example 1 (cont.)
• Presented to ocamlyacc:

%token int id comma
%start A
%type <int> A
%%
A: B comma int {0}
B: id {0}
| id comma B {0}

• Using ”ocamlyacc -v”, file simple.output contains:

3: shift/reduce conflict (shift 6, reduce 2) on comma
state 3
B : id . (2)
B : id . comma B (3)

comma shift 6

– Typeset by FoilTEX –

Example 1 (cont.)

• One way to fix grammar:

A → B int

b → id , | id , B

– Typeset by FoilTEX –

Example 1 (cont.)

• Another way to fix grammar:

A → B , int

b → id | B , id

– Typeset by FoilTEX –

Example 2

• Ambiguous grammar for conditional expressions:

• CondExpr → id | CondExpr || CondExpr

| CondExpr && CondExpr | ! CondExpr

• Consider this input:

• x || y && z

• Leads to a stack/lookahead configuration in which shifting
and reducing both work, but produce different parse trees.

• Look at s-r parse, and at two parse trees.

– Typeset by FoilTEX –

Example 2 (cont.)

• ocamlyacc -v output contains:

10: shift/reduce conflict (shift 7, reduce 2) on and
10: shift/reduce conflict (shift 8, reduce 2) on or
state 10
CondExpr : CondExpr . or CondExpr (2)
CondExpr : CondExpr or CondExpr . (2)
CondExpr : CondExpr . and CondExpr (3)

and shift 7
or shift 8
$end reduce 2

– Typeset by FoilTEX –

Example 2 (cont.)

• One way to resolve conflict: fix grammar.

• Use “stratified grammar,” as for arithmetic expressions:

CondExpr → CondTerm | CondExpr || CondTerm

CondTerm→ CondPrimary | CondTerm && CondPrimary

CondPrimary → id | ! CondPrimary

– Typeset by FoilTEX –

Example 2 (cont.)

• Another way to resolve conflict: precedence declarations.

• Suppose t1 is the topmost terminal symbol on the stack, and
t2 is the lookahead symbol. Then:

• If t1, t2 appear in the same %left declaration, then reduce

• If t1, t2 appear in the same %right declaration, then shift

• If t1 appears in a declaration before t2, shift

• If t1 appears in a declaration after t2, reduce

– Typeset by FoilTEX –

Example 2 (cont.)

• Use the ambiguous grammar, but add these declarations:

%left or
%left and

• x || y && z is now handled correctly.

– Typeset by FoilTEX –

Example 2 (cont.)

• However, ocamlyacc still reports conflicts. Verbose output:

6: shift/reduce conflict (shift 7, reduce 4) on and
6: shift/reduce conflict (shift 8, reduce 4) on or
state 6
CondExpr : CondExpr . or CondExpr (2)
CondExpr : CondExpr . and CondExpr (3)
CondExpr : not CondExpr . (4)

and shift 7
or shift 8
$end reduce 4

• Problem is that we didn’t resolve ambiguity involving “!”.
Add “%nonassoc not” after above two lines.

– Typeset by FoilTEX –

More on conflicts

• Posted supplementary notes discuss four grammars that have
conflicts, and how to resolve them.

• All are relevant to the current MP.

– Typeset by FoilTEX –

