Lecture 10: LR parsing and
resolving conflicts

® What are conflicts

® Example 1: a simple, unambiguous grammar

® ocamlyacc output
® Using parse trees to understand conflict

e Fixing conflict
® Example 2: ambiguous grammar for conditional expressions

e Eliminating conflicts using %prec declarations

— Typaeset by Fol TEX —

Conflicts

©® ocamlyacc generates tables saying what action to take at
each point in parse

e Method is called “LALR(1)”

@ “LR(l)" is a similar, but somewhat more powerful, method
— will often use “LR(1)” and “LALR(1)” as synonyms.

® Not every grammar can be parsed using this method.

® Problem is always that ocamlyacc cannot decide on the
proper action in some cases

e “Shift /reduce conflict” — cannot decide whether to shift
or reduce

e “Reduce/reduce conflict” — knows to reduce, but can’t
decide which production to use

— Typaset by Foil TEX —

Example 1 -
A= B uwT

® A — B. int ~ o R
B —s id [id , B B & \‘D‘f

® Grammar is unambiguous, but consider these two inputs:

A
° %,y,10 {?&\:“m 27 ™o
* %£y,z10 .
(S B
® Both lead to an identical stack/lookahead~configuration, but
the correct action in one case is shift and in the other is

reduce.

® Look at s-r parse, and at two parse trees.

— Typaset by Foil TEX —

Example 1 (cont.)

® Presented to ocamlyacc:

Jtoken int id comma

“istart A

stype <int> A

A A

A: B comma int {0}

B: id {0}
| id comma B {0}

® Using "ocamlyacc -v”, file simple.output contains:

3: shift/reduce conflict (shift 6, reduce 2) on comma

state 3
B : id . (2)
B : id . comma B (3) [

comma shift 6

— Typaeset by Fol TEX —

Example 1 (cont.)

® One way to fix grammar:

A — Bint
b — id, |id, B

— Typeset by Fol TEX —

Example 1 (cont.)

® Another way to fix grammar:

A — B, int
b — id| B, id

— Typeset by Fol TEX —

Example 2

® Ambiguous grammar for conditional expressions:

® CondExpr — id| CondExpr || CondExpr
| CondExpr && CondFExpr | ! CondExpr

® Consider this input:
e x || v && =z

® Leads to a stack/lookahead configuration in which shifting
and reducing both work, but produce different parse trees.

® Look at s-r parse, and at two parse trees.

-
CE e
‘ Y e O
QE h\\(-"c' CE/%-; c“[('—
—_— W SN\ Y i T
- Ce c -
(e ¢ CE =
— Typeset by Foil TEX — £ @{L | T @
B = &

Example 2 (cont.)

® ocamlyacc -v output contains:

10: shift/reduce conflict (shift 7, reduce 2) on and
10: shift/reduce conflict (shift 8, reduce 2) on or
state 10

CondExpr : CondExpr . or CondExpr (2)

CondExpr : CondExpr or CondExpr . (2)

CondExpr : CondExpr . and CondExpr (3)

and shift 7

or shift 8
$end reduce 2

— Typeset by Fol TEX —

Example 2 (cont.)

® One way to resolve conflict: fix grammar.

® Use “stratified grammar,” as for arithmetic expressions:

CondExpr — CondTerm | CondExpr || CondTerm
CondTerm — CondPrimary | CondTerm && CondPrimary
CondPrimary — id | | CondPrimary

\‘”j&% L p—J /CF\
T TR

T ekad [l 2 L
C? J ﬁ cT-2<¥P Ex CT L& C?

: \ \ {
PR p ce {

(ﬂL-kwp L2 sk ;(;,

) EM R
cr (ot ‘“‘,‘L -

#

— Typeset by Foil TEX — 'i

Example 2 (cont.)

® Another way to resolve conflict: precedence declarations.

® Suppose ¢, is the topmost terminal symbol on the stack, and
t> is the lookahead symbol. Then:

If ¢, 1> appear in the same Y left declaration, then reduce

]
e If t, L, appear in the same %right declaration, then shift
e If {;{ appears in a declaration before i, shift

L=

If 1, appears in a declaration after t>, reduce

9. L4t

‘E 7..\1"1:[9:3%
7- ,-D,L:r ' /g v (6 MCE
7. nadssoc | £ LE.

[k&

— Typaset by Foil TEX —

Example 2 (cont.)

® Use the ambiguous grammar, but add these declarations:

fleft or
Lleft and

® x || y && z is now handled correctly.

— Typeset by Fol TEX —

Example 2 (cont.)

® However, ocamlyacc still reports conflicts. Verbose output:

6: shift/reduce conflict (shift 7, reduce 4) on and
6: shift/reduce conflict (shift 8, reduce 4) on or
state 6

CondExpr : CondExpr . or CondExpr (2)

CondExpr : CondExpr . and CondExpr (3)

CondExpr : not CondExpr . (4)

and shift 7
or shift 8
$end reduce 4

® Problem is that we didn’'t resolve ambiguity involving
Add “%%nonassoc not” after above two lines.

— Typaeset by Fol TEX —

Notes on shift-reduce parsing and resolving conflicts in

ocamlyacc - Supplementary notes for lecture 10,2/12/10

CS 421, Prof. Kamin

In this note, we go through four grammars and show how to resolve conflicts reported by ocamlyacc.

For each grammar, we do the following:

1. Run ocamlyacc. To simplify the process, we give {0} as the semantic action for each rule. Each of the
grammars has a conflict. (In every case, it Is a shift/reduce conflict; we have no reduce/reduce

conflicts.)

2. We look at the ocamlyacc verbose (“ocamlyacc -v") output, to see where the conflict is.

3. Based on that output, we attempt to construct an example that shows the conflict. A conflict means
that an input string leads to a stack/lookahead configuration in which the parser cannot make a clear

choice between shifting and reducing. If the grammar is ambiguous, we will just show one input that
leads to such a configuration, and which therefore has multiple parses. If the grammar is unambiguous,
we will show two Inputs that lead to the same configuration, but differ after the lookahead symbol.

4. Using our understanding of the source of the conflict, we will resolve it in one of the three ways
described in class: modify the grammar; use precedence and associativity declarations; or do nothing.
We will show first that this resolves the conflict illustrated by the example we obtained in step 3;

running ocamlyacc proves that we did in fact eliminate all conflicts.

Grammar 1
Stmt — MethodCall | ArrayAsgn

MethodCall — Target(); M.ﬂcﬂ =
Target — id | id.id
ArrayAsgn — id (Int) =int;

—

ey
preeyflorm 28 - -

This grammar is unambiguous. ocamlyacc reports a shift/reduce conflict.

(This is the exact input we presented to ocamlyacc:

ttoken oparen cparen id semic dot int equal
%¥start STMT S‘.r
Ytype <int> STMT)

W% AR

STMT : METHODCALL {0} | ARRAYASGN {0} /l \\\

’I‘*y)(

3D
s

foowEf

D,

st

M<

~

P

AN

METHODCALL : TARGET oparen cparen semic {0}
TARGET : id {0} | id dot id {0}
ARRAYASGN : id oparen int cparen equal int semic {0}

We will not show this for the other grammars we study. Note that we used semantic action {0} for every
production, because we were only interested in seeing the parsing conflicts.)

Specifically, the verbose output from ocamlyacc includes the following. (The entire output file,
examplel.output, is about 160 lines long; the interesting part starts where it gives the conflict, which
happens to be at line 43, and ends when the next “state” is shown):

3: shift/reduce conflict (shift 8, reduce 4) on oparen
state 3
TARGET : id . (4)
TARGET : id . dot id (5)
ARRAYASGN : id . oparen int cparen equal int semic (6)

oparen shift 8 ,]C () - —
dot shift % (r o

This says: If there is an id on the stack and the lookahead symbol is (", the parser cannot choose
between shifting and reducing. We know the lookahead symbol is ‘(* because it says that on the first
line. We know the top symbol on the stack is id because the three productions have a period after an id.
Most importantly, in the line “TARGET : id .”, the period Is at the end of the production, while in the
other two lines it is in the middle. This is where the shift/reduce conflict comes in: there can be an
input where, with id on the stack and ‘(" in the input, the correct action is to reduce Target — id, and
another input that leads to the same situation but where shift is the correct action.

Before proceeding, see if you can look at the grammar and find two such inputs.

Looking back at the grammar, it Is easy to see where an id on the stack should be reduced using
Target— id. Targetis used in MethodCall, and is followed by a ‘(". So we can consider a simple sentence
like “x();". Itis also easy to see where this same configuration requires a shift action: in the rule for
ArrayAsgn, an id is followed by ‘("; the ‘(" should be shifted so that, eventually, this production can be
used. This suggests a sentence like “x(1) = 2;". Let's look at the parse trees for these two inputs:

FATA) St T

i
|
g'l"l L H i
p\i’lﬁ_,{(S ﬁr:].1 ‘i"“‘\\::h'\ |

”Tar‘j“t C D) x
|
¥

We can easlly see where the conflict comes in: on the left, the x needs to be reduced to put Target on
the stack, on the right, the ‘(' should be shifted. (Keep in mind that reductions always consume the top
of the stack. On the left, we can’t shift /(" and then loter do the Target — id reduction. It has to be done
as soon as the (" is the lookahead symbol.)

We can resolve the conflict here by observing that the Target — id production is what's causing the
problem. Suppose we eliminate it and just put the id directly in the MethodCall production:

Sstmt — MethodCall | ArrayAsgn
MethodCall — Target(); | id{);
Target — id.id

ArrayAsgn — Id [Int) =Int;

Now, the parse tree for “x();" is

PRARSRY

l
W{LGQ (,c.-“.
/ . \\
x C D

and there is no conflict: with x on the stack and '(* as the lookahead symbaol, the correct action in both
cases Is to shift. (Note that the other kind of target, id . id, does not present a problem; a peried In the
input should always be shifted; while, if the stack contains “id . id” and the lookahead is (', the correct
action is reduce Target — 1d . Id.) Running ocamlyacc on the modified grammar shows that we have
eliminated the conflict.

More on conflicts

® Posted supplementary notes discuss four grammars that have
conflicts, and how to resolve them.

® AIll are relevant to the current MP.

— Typeset by Fol TEX —

