
1/18/2010

1

CS 421 – Programming Languages and
Compilers
Welcome!
Today’s class:

Staff
Why 421?
Class structure and policies
This week’s assignments
Overview of languages

Staff

Professor: Sam Kamin, 4237 SC, 3-8069
Office hrs: TBD

TAs: Chris Osborn (TBD)
William Mansky (TBD)

Web page:p g
http://www.cs.illinois.edu/class/cs421/

Newsgroup: news.cs.uiuc.edu – class.cs421

1/18/2010

2

What is 421 about?
Implementation and design of programming languages
First half of course: Implementation

Languages implemented by programs called compilers, together Languages implemented by programs called compilers, together
with run-time systems that provide necessary services at run
time. We will study compilers and run-time systems.
Compilers have to parse programs, and then translate them to
an executable form. We will study parsing and translation.

Second half of course: Design
Th l i d W ill d i There are many languages in use today. We will study a variety
of languages.
Languages are complicated, but can be understood by formal
definition and analysis. We will study formal definitions of
languages, especially their type systems and operational behavior.

Why?

Why learn about compilers?
Complete picture of how programs go from keyboard to p p p g g y
execution
Understand translation from high-level language to
machine language
Learn to build compilers and other programs that
process structured input
Learn interesting algorithms

1/18/2010

3

Why?

Why learn about languages?
Increase ability to learn new languagesy g g
Learn correct terminology for describing languages
Become better programmers by seeing different
perspectives on programming

Class structure

Lectures Tuesday and Thursday. Plain notes (usually)
posted before class; annotated notes posted after class.
Strongly advise taking notes in class.
Weekly assignments
Programming in OCaml
Grades
Cheating
Lateness

1/18/2010

4

Class structure

Topics:
First half: Compilersp

Next 2 classes: OCaml
Then: Lexical analysis and parsing (applicable also to non-PLs)
Then: Creating executable code

Second half: Languages

OCaml

We will use the OCaml programming language for most of
the work in this class
Functional programming language

One of the two leading language paradigms (the other is
object-oriented)
Defined mainly by no assignment statements

Heavy use of dynamically-allocated data structures and recursion

Everything we will do in the first half of the class could y g
also be done in Java, but:

OCaml notationally more concise
Using OCaml now will prepare you for more advanced uses of
OCaml in second half of class

1/18/2010

5

This week’s assignments

MP0.
Handout on basic OCaml.
Simple programming assignment.
“Due” Wednesday night. This assignment is not graded, but we
have set up the handin program for it so that you can get used
to it.

MP1.
Based on material we will cover on ThursdayBased on material we will cover on Thursday.
Due before next Tuesday’s (1/26) class.

Programming: Where were we, and
where are we?

Where we were
Small, slow, serial computers

Little infrastructure beyond raw machiney
Parallelism the exception rather than the rule

Emphasis on machine, rather than programmer, efficiency
Programmer control over memory usage

Where we are
Large, fast, multicore computers

Vast layers of functionality to build onVast layers of functionality to build on

Emphasis on programmer efficiency, rapid development
Automatic memory mgt; built-in concurrency/parallelism

Actually, now we’re in both places at once: need high
efficiency sometimes, rapid development other times –
and really want to have both all the time.

1/18/2010

6

What languages to people use today?

C, Java, C++, Objective C, C#, Python, Ruby,
Fortran, Javascript, OCaml, …

What distinguishes them from one another?

Fortran, Javascript, OCaml, …

Capsule history of PLs

1957 Fortran Lisp

1970

1980

1990

Algol

C

C++

Java

Lisp

ML

OCaml

P th
2000

Now

C#
Python

Ruby

Scala, Clojure, …

1/18/2010

7

Summary of PLs
Traditional,
“static”

Scripting,
“dynamic”

Mixed

Examples C, Fortran, C++ Python, Ruby, JS Java, C#, OCaml

Applications

Objects?

Memory mgt.

Compiles to

Run-time
system/JIT

Concurrency

Types

Tagged values

