
CS 421 Spring 2010 Final

Monday, May 10, 2010

Name

NetID

• You have 180 minutes to complete this exam

• This is a closed book exam.

• Do not share anything with other students. Do not talk to other students. Do not look
at another student’s exam. Do not expose your exam to easy viewing by other students.
Violation of any of these rules will count as cheating.

• If you believe there is an error, or an ambiguous question, seek clarification from one of the
TAs. You must use a whisper, or write your question out.

• Including this cover sheet, there are 18 pages to the exam. Please verify that you have all 18
pages.

• Please write your name and NetID in the spaces above, and at the top of every page.

Question Value Score

1 20
2 20
3 20
4 15
5 15
6 20
7 15
8 10 XC
9 20
10 15
11 20
12 10
13 10 + 10 XC

Total 200 + 20 XC

1

CS 421 Final Name:

1. (20 pts) Write the following OCaml functions, and give their types:

(a) (5 pts) lteq n lis returns the number of numbers in lis that are less than or equal to
n.

lteq 10 [3; 4; 12; 15]
2

Type: ’a -> ’a list -¿ int
Code:

let rec lteq n lis = match lis with
[] -> 0

| x::xs -> let m = lteq n xs in if x<=n then m+1 else m;;

(b) (5 pts) Using fold_right instead of explicit recursion, write an OCaml function remove_empty
that takes a list of strings and removes any empty strings from it, leaving the remaining
strings in their original order. Recall that the type of fold_right is
(’a -$>$ ’b -$>$ ’b) -$>$ ’a list -$>$ ’b -$>$ ’b.

remove_empty ["Return"; "your"; ""; "bottles"]
["Return"; "your"; "bottles"]

Type: string list -¿ string list
Code:

let remove_empty lis =
fold_right (fun x y -> if x="" then y else x::y) lis [];

2

CS 421 Final Name:

(c) (5 pts) mapfuns flst x applies each function in the list of functions flst to the value
x.

mapfuns [fun x -> x*x; fun x -> x-1; fun x -> x/2] 8
[64; 7; 4]

Type: (’a -> ’b) list -> ’a -> ’b list
Code:

let rec mapfuns flis x = match flis with
[] -> []

| f::fs -> f x :: mapfuns fs x

(d) (5 pts) filter takes a boolean-valued function f and a list L and returns a pair of lists,
one with the elements of L for which f was true, and one with the elements for which it
was false.

filter (fun x -> x > 0) [4; 5; -3; 2; -7; 0]
([4; 5; 2]; [-3; -7; 0])

Type: (’a -> bool) -> ’a list -> ’a list * ’a list
Code:

let rec filter f lis = match lis with
[] -> ([], [])

| x::xs -> match filter f xs with
(fs, notfs) -> if f x then (x :: fs, notfs)

else (fs, x :: notfs)

3

CS 421 Final Name:

2. Lexing (20 pts) A sentence is a sequence of letters and spaces that begins with a capital
letter and ends with a period (words my be separated by any number of spaces.) In addition,
the last character before the period must not be a space.

(a) (10 pts) Write a regular expression that describes the set of sentences.

[’A’-’Z’](’.’ | [’a’-’z’ ’A’-’Z’ ’ ’]* [’a’-’z’ ’A’-’Z’] ’.’)

(b) (10 pts) Write a DFA that recognizes sentences. Label the start state with S, accepting
states with A, and other states with R.

4

CS 421 Final Name:

3. Parsing (20 pts) Consider the following type of tokens:

type token = ID of string | OR | SEMICOLON | IF | THEN | ELSE | RETURN

Now consider the following grammar, with non-terminals S and C:

S -> IF C THEN S ELSE S | RETURN C
C -> ID | ID OR C | S SEMICOLON C

(a) (5 pts) Give a parse tree for the string “if a then return b else return c”.

(b) (5 pts) Give one reason that this grammar is not LL(1).

FIRST(ID) and FIRST(ID OR C) intersect. (Needs left-factoring.)

(c) (10 pts) Transform the grammar to an LL(1) grammar for the same language. (Hint:
this requires introducing one new non-terminal.)

S -> IF C THEN S ELSE S | RETURN C
C -> ID D | S SEMICOLON C
D -> epsilon | OR C

5

CS 421 Final Name:

4. Parsing (15 pts) Consider the following type of tokens:

type token = INT of int | PLUS | TIMES

Now consider the following ambiguous grammar over tokens:

S -> S PLUS S | S TIMES S | INT

(a) (5 pts) Give a sentence that has two parse trees, and show the two parse trees.

3+4+5

(b) (10 pts) Give a grammar that recognizes the same language but is unambiguous, and
makes PLUS and TIMES left-associative and gives TIMES higher precedence.

S -> S PLUS T | T
T -> T TIMES P | P
P -> INT

6

CS 421 Final Name:

5. Abstract syntax (15 pts) Referring to the previous problem, suppose we define an abstract
syntax for the language as follows:

type exp = Integer of int | Plus of exp * exp | Times of exp * exp

(a) (5 pts) Write the function compute : exp -> int that computes the value of a given
expression.

let rec compute e = match e with
Integer i -> i

| Plus(e1,e2) -> compute e1 + compute e2
| Times(e1,e2) -> compute e1 * compute e2

(b) (10 pts) Write the function expand : exp -> exp that takes an expression and replaces
every instance of “e1 * (e2 + e3)” with “e1 * e2 + e1 * e3”, and replaces every instance
of “(e1 + e2) * e3” with “e1 * e3 + e2 * e3”. Note that applying the transformation can
produce new expressions that are subject to futher transformation; e.g. (1+2)*(3+4) can
be transformed to (1+2)*3 + (1+2)*4, after which more transformations can be applied.
Your function should result in an expression in which no further transformations are
applicable.

let rec expand exp = match exp with
Integer i -> Integer i

| Plus(e1,e2) -> Plus(expand(e1), expand(e2))
| Times(e1,e2) ->

let e1’ = expand(e1)
and e2’ = expand(e2)
in match e1’ with

Plus(e3,e4) -> Plus(expand(Times(e3, e2’)),
expand(Times(e4, e2’)))

| _ -> (match e2’ with Plus(e3,e4) -> Plus(expand(Times(e1’, e3)),
expand(Times(e1’, e4)))

| _ -> Times(e1’, e2’));;

7

CS 421 Final Name:

6. Parsing (20 pts) Consider the following grammar:

S ::= if C then S else S | return C
C ::= id | C or C

Suppose that the “or” operator is declared to be left-associative with the %left directive.
Show the first thirteen steps of the shift-reduce parse of the string “if x or y or z then return
x else return y”. We have filled in the first and last lines for you:

Action Stack Input

Shift if x or y or z then ...
Shift if x or y or z then ...
Red C → id if x or y or z then ...
Shift if C or y or z then ...
Shift if C or y or z then ...
Red C → id if C or y or z then ...
Red C → C or C if C or C or z then ...
Shift if C or z then ...
Shift if C or z then ...
Red C → id if C or z then ...
Red C → C or C if C or C then ...
Shift if C then ...
Shift if C then return x else return y

8

CS 421 Final Name:

7. Code generation (15 pts) In class, we gave the following translation schemes for translating
source programs into an intermediate representation (IR). All but the first take an AST
(expression or statement) to a sequence of IR instructions.

[e] : translate expression e to IR; returns pair (IR instruction list, location of value)

[S] : translate statement S to IR

[e]x : translate expression e to code that stores value of e in variable x

[S]L : translate statement S in context of a loop or switch statement, where L is the target of
a break statement

[e]Lt,Lf : translate expression e to code that branches to Lt if e is true, or Lf otherwise (the
short-circuit evaluation scheme)

The instructions in our intermediate representation were: x = n; x = y; x = y + z (for any
operation +); JUMP L; CJUMP x, L1, L2; and x = LOADIND y.

Give the translation for the following constructs:

(a) (5 pts) [if e then S1 else S2] Use the short-circuit translation scheme, [e]Lt,Lf for the
condition.

let L1, L2, L3 = new labels in
[e]L1,L2

L1: [S1]
JUMP L3

L2: [S2]
L3:

(b) (5 pts) [e1 && e2]x, for boolean-valued expressions e1 and e2. Recall that schemes of
the form [e]x put the value of e in variable x. In this case, you should avoid evaluating
e2 if e1 turns out to be false.

let L1, L2, L3, L4 = new labels in
[e1]L1,L2

L1: [e2]L3,L2

L2: x = false
JUMP L4

L3: x = true
L4:

9

CS 421 Final Name:

(c) (5 pts) [e1 || e2 || e3]Lt,Lf .

let L1, L2 = new labels in
[e1]Lt,L1

L1: [e2]Lt,L2

L2: [e2]Lt,Lf

10

CS 421 Final Name:

8. Reference-counting (10 pts XC) In the following picture of the heap, each large rectangle
represents an object containing three words (for simplicity, we’re assuming all object have
the same size), and the lines within it are the word boundaries. In this heap structure, the
first word of each object either gives the reference count, or, if the object is on the free list, it
points to the next object on the free list (if any); the box labeled ”Free list” points to the head
of the free list. Lastly, the Pointers coming from the right side are from the stack. Complete
this picture in the following way: Construct the free list to contain all the non-reachable
objects (their order does not matter). Fill in the reference counts for each reachable object.
(To simplify grading, draw all your pointers on the left side.)

11

CS 421 Final Name:

9. Representing data with higher-order functions (20 pts) A sparse matrix is a matrix in
which most elements are zero. Such a matrix can be represented as a function that takes a
row and column number, and returns the value at that location.

type sparse_matrix = int * int -> float;;

(a) (5 pts) Define emptymat, the sparse matrix in which all elements are zeroes.

let emptymat (r,c) = 0.0

(b) (5 pts) Define the subscripting operation get m (r,c) that returns m[r,c].

let get m (r,c) = m (r,c)

(c) (5 pts) Define the function set m (r, c) v, which returns a new matrix m’ just like m
except that m’[r,c] = v.

let set m (r,c) v = fun (r’,c’) -> if r’=r & c’=c then v else m(r’,c’)

(d) (5 pts) Define the function get_interval m r c1 c2, which returns the list of the
elements of m in row r from columns c1 to c2 inclusive.

let rec get_interval m r c1 c2
= if c1>c2 then [] else m (r,c1) :: get_interval m r (c1+1) c2

12

CS 421 Final Name:

10. Functional programming in object-oriented languages (15 pts) Complete the defini-
tions of emptymat, get, and set in the following Java implementation of sparse matrices:

interface IntSparseMatrix{
float apply (int r, int c);

}

class MapOps {
static IntSparseMatrix emptymat =

new IntSparseMatrix () {
public float apply (int r, int c) { return 0f; }

};

static float get (IntSparseMatrix m, int r, int c){
return m.apply(r,c);

}

static IntSparseMatrix set (final IntSparseMatrix m,
final int r, final int c, final float v) {

return new IntSparseMatrix () {
public float apply (int r1, int c1) {

if (r1==r && c1==c)
return v;

else
return m.apply(r1, c1);

}
};

}
}

13

CS 421 Final Name:

11. Operational semantics (20 pts)

(a) (5 pts) The expression let x, y = e1, e2 in e3 is an abbreviation for let x = e1
in let y = e2 in e3. Give an operational semantics rule in OSclo for this new type
of expression. You must give it directly in terms of the subcomputations for e1, e2, and
e3, and not simply by translation.

(b) (5 pts) Give a proof in OSclo of the following judgment:

∅, (fun x→ fun y→ x + y) 3 4 ⇓ 7

You may wish to write your answer on the back of this sheet; if so, please indicate that
you have done this.

14

CS 421 Final Name:

(c) (10 pts) Give a proof tree for the following judgment in OSclo:

{y 7→ 3}, (fun f→ f(f 2))(fun x→ x ∗ y) ⇓ 18

You may wish to rotate the page.

15

CS 421 Final Name:

12. Type-checking (10 pts) The following questions use type system TOCaml, which is given at
the end of this exam.

(a) (5 pts) Consider the following type judgment:

∅ ` (fun f→ f 5)(fun x→ x + 1) : τ

What type should be filled in for τ?

int

What is the first rule that would be applied in the derivation of this judgment? Apply
the rule and show the premises that remain. You may fill in further steps if it helps to
figure out the correct types.

Application rule:

∅ ` fun f -> f 5: (int → int) → int ∅ ` fun x -> x+1: int → int
∅ ` (fun f -> f 5)(fun x -> x+1): int

(b) (5 pts) Consider the following type judgment:

∅ ` let f = fun x y→ (x, y) in (f 2 "a", f true 5) : τ
What type should be filled in for τ?

τ = (int * string) * (bool * int)

What is the first rule that would be applied in the derivation of this judgment? Apply
the rule and show the premises that remain. You may fill in further steps if it helps to
figure out the correct types.

Let rule:

∅ ` fun x y -> (x,y) : α→ β → α ∗ β ∅[f : ∀α, β.α→ β → α ∗ β] ` (f 2 ”a”, f true 5): τ
∅ ` let f = fun x y→ (x, y) in (f 2 "a", f true 5) : (f 2 ”a”, f true 5): τ

where τ is as given above.

16

CS 421 Final Name:

13. Hoare logic (10 pts + 10 pts XC)

(a) (10 pts) Let S be the following code, where i is an integer and b a boolean:

while (i > 0)
{
i = i - 1;
b = !b;

}

Let P be the pre-condition “b = true & i=i0 & i ≥ 0.” Write condition Q that fully
defines b in terms of i at the end of the loop, such that: P { S } Q can be proven. Then
write condition I that can serve as an invariant of the loop to prove P { S } Q.

Q:

b = even(i0)
I:

b = even(i0 - i)

(b) (10 pts XC) In the following loop — call it S — x, y, and z are lists; S just splits x in
two, putting alternate elements on y and z:

while (x != []) {
y = hd(x) :: y;
x = tl(x);
if (x != []) {

z = hd(x) :: z;
x = tl(x);

}
}

Write a termination function φ(x, y, z). Recall that this is an integer-valued function of
the variables of the loop that has these properties: it is always non-negative; and its
value at the end of each iteration is strictly less than its value at the start of the iteration.

φ(x, y, z) = length(x)

17

CS 421 Final Name:

Rules of TOCaml:

(Const)
Γ ` c : int

(Var)
Γ(x) = σ τ ≤ σ

Γ ` x : τ

(Application)
Γ ` e1 : τ ′ → τ Γ ` e2 : τ ′

Γ ` e1e2 : τ

(Abstraction)
Γ[x : τ] ` e : τ ′

Γ ` fun x→ e : τ → τ ′

(let)
Γ ` e1 : τ ′ Γ[x : GENΓ(τ ′)] ` e2 : τ

Γ ` let x = e1 in e2 : τ

Rules of OSCLO:

(Const)
η, k ⇓ k

(Var)
η, x ⇓ η(x)

(Abstr)
η, fun x→ e ⇓ 〈fun x→ e, η〉

(δ)
η, e1 ⇓ v1 η, e2 ⇓ v2 v = v1⊕ v2

η, e1 ⊕ e2 ⇓ v

(App)
η, e1 ⇓ 〈fun x→ e, η′〉 η, e2 ⇓ v η′[x→ v], e ⇓ v′

η, e1e2 ⇓ v′

18

