
Lecture 9: Bottom-up parsing;
ocamlyacc

• Bottom-up parsing

• ocamlyacc

– Typeset by FoilTEX –



Top-down vs. bottom-up parsing

• Why is top-down called “top-down”?

As we consume tokens, we build a parse tree. At any time,
we are filling in the children of a particular non-terminal. As

soon as we decide what production to use, we can fill in
the tree. In this sense, we are building the tree from the top
down.

• Example: E → id T

T → ε | + E | ∗ E

Input: x + y * z

– Typeset by FoilTEX –



Bottom-up parsing

• Bottom-up parsing works by creating small parse trees and
joining them together into larger ones.

• Example: E → id T

T → ε | + E | ∗ E

Input: x + y * z

– Typeset by FoilTEX –



How bottom-up parsing works

• Keep a stack of small parse trees. Based on what’s in this
stack, and the next input token, take one of these actions:

• Shift: Move lookahead token to stack

• Reduce A→ α: If roots of trees on stack match α, replace
those trees on stack by single tree with root A.

• Accept: Reduce when non-terminal is goal, look-ahead is
eof

• Reject

• Bottom-up parsing is also called shift-reduce parsing.

– Typeset by FoilTEX –



Shift-reduce example 1

• Example: L → L ; E | E
E → id

Input: x; y; z

– Typeset by FoilTEX –



Shift-reduce example 2

• Example: E → E + T | T
T → T ∗ P | P
P → id | int

Input: x + 10 * y

– Typeset by FoilTEX –



Using ocamlyacc

• Input attribute grammar is put in file
<grammar>.mly

• Execute ocamlyacc <grammar>.mly

• Produces code for parser in <grammar>.ml and interface
(including type declaration for tokens) in <grammar>.mli

– Typeset by FoilTEX –



Parser code

• <grammar>.ml defines one parsing function per entry point

• Parsing function takes a lexing function (lexer buffer to
token) and a lexer buffer as arguments

• Returns semantic attribute of corresponding entry point

– Typeset by FoilTEX –



Example - expression grammar
In this example, we will take a simple expression grammar and create a parser

to parse inputs and produce abstract syntax.

Grammar :

M → Exp eof
Exp → Term | Term + Exp | Term − Exp
Term → Factor | Factor ∗ Term | Factor / Term
Factor → id | ( Exp )

Abstract syntax :

(* File: expr.ml *)
type expr =

Plus of expr * expr
| Minus of expr * expr
| Mult of expr * expr
| Div of expr * expr
| Id of string

– Typeset by FoilTEX –



Example - lexer
(* File: exprlex.mll *)
let numeric = [’0’ - ’9’]
let letter = [’a’ - ’z’ ’A’ - ’Z’]
rule tokenize = parse
| "+" {Plus_token}
| "-" {Minus_token}
| "*" {Times_token}
| "/" {Divide_token}
| "(" {Left_parenthesis}
| ")" {Right_parenthesis}
| letter (letter | numeric | "_")* as id {Id_token id}
| [’ ’ ’\t’ ’\n’] {token lexbuf}
| eof {EOL}

– Typeset by FoilTEX –



Example - parser
(* File: exprparse.mly *)
%{ open Expr
%}
%token <string> Id_token
%token Left_parenthesis Right_parenthesis
%token Times_token Divide_token
%token Plus_token Minus_token
%token EOL
%start main
%type <expr> main
%%

– Typeset by FoilTEX –



Example - parser (exprparse.mly)
expr:

term {$1}
| term Plus_token expr {Plus($1,$3)}
| term Minus_token expr {Minus($1,$3)}

term:
factor {$1}

| factor Times_token term {Mult($1,$3)}
| factor Divide_token term {Div($1,$3)}

factor:
Id_token {Id $1}

| Left_parenthesis expr Right_parenthesis {$2}

main:
| expr EOL {$1}

– Typeset by FoilTEX –



Example - using parser
# #use "expr.ml";;
...
# #use "exprparse.ml";;
...
# #use "exprlex.ml";;
...
# let test s =
let lexbuf = Lexing.from string(s^"\n") in

main tokenize lexbuf;;
# test "a + b";;
- : expr = Plus(Id "a",Id "b")

– Typeset by FoilTEX –



ocamlyacc Input

• File format:

%{
<header>

%}
<declarations>

%%
<rules>

%%
<trailer>

– Typeset by FoilTEX –



ocamlyacc <header>

• Contains arbitrary Ocaml code

• Typcially used to give types and functions needed for the
semantic actions of rules and to give specialized error recovery

• May be omitted

• <footer> similar. Possibly used to call parser

– Typeset by FoilTEX –



ocamlyacc <declarations>

• %token symbol ... symbol

Declare given symbols as tokens

• %token <type> symbol ... symbol

Declare given symbols as token constructors, taking an argu-
ment of type type

• %start symbol ... symbol

Declare given symbols as entry points; functions of same
names in <grammar>.ml

– Typeset by FoilTEX –



ocamlyacc <declarations>

• %type <type> symbol ... symbol

Specify type of attributes for given symbols. Mandatory for
start symbol

• %left symbol ... symbol

• %right symbol ... symbol

• %nonassoc symbol ... symbol

Associate precedences and associativities to given symbols.
Same line, same precedence; earlier line, lower precedence
(broadest scope)

– Typeset by FoilTEX –



ocamlyacc <rules>

• nonterminal:
symbol ... symbol { semantic action }
| ...

| symbol ... symbol { semantic action }
;

• Semantic actions are arbitrary Ocaml expressions

• Must be of same type as declared (or inferred) for nonter-

minal

• Access values semantic attributes of symbols by position: $1
for first symbol, $2 for second, etc.

– Typeset by FoilTEX –



Friday’s class

• Big question: how to choose whether to shift or reduce.

• ocamlyacc uses a method — called LALR(1) — to construct
tables which say what action to take.

• There are times when there is no good way to make this
decision. (ocamlyacc will reject grammar and give an error
message.) In bottom-up parsing, these are called conflicts.
There are two types: shift/reduce and reduce/reduce.

• As with top-down parsing, these problems can sometimes be
resolved by modifying the grammar.

• On Friday, will discuss these conflicts and give some advice
on how to resolve them.

– Typeset by FoilTEX –



MP 6

• MP 6 starts with a grammar embedded in an incomplete
ocamlyacc specification. You will need to finish the spec:

• Remove “extended BNF” productions - ocamlyacc cannot
handle them

• Resolve grammar conflicts

• Fill in actions so as to produce ASTs.

– Typeset by FoilTEX –


