CS 421 Lecture 21 – The OCaml type system

- Polymorphic types, i.e. "type schemes"
- Type rules polymorphism introduced by "let" expressions
- Examples
- Explaining generalization
- Reference types in OCaml
 - How they work
 - Why they break polymorphism
 - The "value restriction"

T_{OCaml} – the Ocaml type system

Main points about OCaml type system:

- Types contain variables (notated α , β , ...)
- Variables can be generalized in some circumstances; types with generalized variables are written $\forall \alpha, \beta, \dots, \tau$, and called "type schemes"
- If a variable's type is a type scheme, it can be used with any types substituted for the quantified type variables.

Example of polymorphic types (type schemes)

fst: ∀α, β. α * β → α.
When applied to (3, "ab"), it has type int * string → int; when applied to ([3], fun y -> y+1) it has type int list * (int → int) → int list.

• cons:
$$\forall \alpha. \ \alpha * \alpha \text{ list} \rightarrow \alpha \text{ list}$$

A user-defined function can have a polymorphic type only in the body of a let expression where it is the let-defined name. Types in T_{OCaml}

Expressions: consts, variables, application, abstraction, let, letrec

 \vdash

Types (notated τ , τ ', τ_n , etc.) : int | bool | ...

| $\tau \rightarrow \tau$ ' (for any types τ and τ ') | TypeVar

TypeVar = α , β , ...

TypeScheme (σ , σ ', etc.) = $\forall \alpha_1$, ..., α_n . τ (n \ge 0)

(Note: TypeSchemes include types)

TypeEnv (notated Γ): map from variables to type schemes

Judgments: $\Gamma \vdash \mathbf{e} : \tau$

Axioms of T_{OCaml}

 T_{OCaml} has just one axiom:

(Var)
$$\frac{\Gamma(x) = \sigma \quad \tau \leq \sigma}{\Gamma \vdash x : \tau}$$

There are no Const axioms; all predefined names are assumed to be in the initial environment (which we continue to write, by abuse of notation, as \emptyset)

Axioms of T_{OCaml}

Understanding the Var axiom:

- If a name has a monomorphic type in Γ , then this works the same as in $T_{\rm simp}$
- If a name has a polymorphic type, then it can be used at any instance of that type. " $\tau \leq \sigma$ " means " τ is an instance of σ " – i.e. τ is obtained from σ by substituting types for type variables.
- The Var rule is an axiom because the assertions above the line are not judgments in the system.

Lecture 22

Example: fst (3, true)

Application and abstraction rules are the same as in T_{simp} . Also add rules for tuples. (Application) $\Gamma \vdash e_1 : \tau' \rightarrow \tau \quad \Gamma \vdash e_2 : \tau'$ $\Gamma \vdash e_1 e_2 : \tau$ (Abstraction) $\Gamma[x:\tau] \vdash e:\tau'$ $\Gamma \vdash fun \ x \rightarrow e : \tau \rightarrow \tau'$ $\Gamma \vdash e_1 : \tau_1 \qquad \Gamma \vdash e_2 : \tau_2$ (Tuple) $\Gamma \vdash (e_1, e_2) : \tau_1 * \tau_2$ I ecture 22

let and letrec are new:

(let)

$$\frac{\Gamma \vdash e_1 : \tau' \quad \Gamma[x : \text{GEN}_{\Gamma}(\tau')] \vdash e_2 : \tau}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau}$$

(letrec)
$$\frac{\Gamma[x:\tau'] \vdash e_1:\tau' \quad \Gamma[x:GEN_{\Gamma}(\tau')] \vdash e_2:\tau}{\Gamma \vdash let \ rec \ x = e_1 \ in \ e_2:\tau}$$

Example: let $f = fun \times -> \times 0$ in f (fun y -> y+1): int

Example: let $f = fun \times -> \times 0$ in (f (fun y -> y+1), f (fun n -> [n])): int * (int list)

Notes on T_{OCaml}

- (1) As in T_{simp} , the structure of a proof is completely determined by the syntactic structure of the expression
- (2) Judgments always assign types to expressions, never type schemes. E.g. Γ ⊢ fst : ∀α, β. α * β → α is not a valid judgment, even though Γ(fst) = ∀α, β. α * β → α (implicitly). Every use of a polymorphic name has a specific type.

Generalization in the let rule

In the let rule, $\text{GEN}_{\Gamma}(\tau)$ usually means "quantify over all type variables in τ ." However, consider this case:

in e

We can type-check the body of f giving x type α . Then, g has type $(\alpha \rightarrow \beta) \rightarrow \beta$, which generalizes to $\forall \alpha, \beta.(\alpha \rightarrow \beta) \rightarrow \beta$, so g incr has type int (with α and β both being int), and f types as int * α . Generalizing f, it gets type $\forall \alpha. \alpha \rightarrow \text{ int } * \alpha$. Now, if e contains the expression "f true", it type checks. However, f actually requires that x be of type int.

Generalization in the let rule (cont.)

For this reason, $\text{GEN}_{\Gamma}(\tau)$ actually means "quantify over all type variables in τ except those that occur free in Γ ." Then, in this case:

in e

if we give x type α , g has type $(\alpha \rightarrow \beta) \rightarrow \beta$, but this generalizes to $\forall \beta.(\alpha \rightarrow \beta) \rightarrow \beta$ (note there is no quantification over α). Now, g incr cannot be typed, because incr has type int \rightarrow int, and the closest we can get by instantiating g's type is $\alpha \rightarrow$ int. To type-check this term, we would *have* to give x type int, so f would have type int \rightarrow int^{*}int, and the call "f true" would be a type error.

References in OCaml

OCaml has references, or assignable variables. Unlike most other languages, *dereferencing* of references has to be done explicitly.

Types: α ref – reference to a value of type α

Operations:

- $\text{ref:} \ \alpha \to \alpha \ \text{ref}$
- $!: \alpha \text{ ref} \to \alpha$

 $:= \alpha \text{ ref}^* \alpha \to \text{unit}$

We also have ; : $\alpha * \beta \rightarrow \beta$, which is useful only when doing imperative programming.

Lecture 22

Would like to treat these operators as polymorphic, but consider this example:

```
let i = fun x -> x
in let fp = ref i
in (fp := not; (!fp) 5)
```

i gets type $\forall \alpha.\alpha \rightarrow \alpha$, and then fp would have type $\forall \alpha.(\alpha \rightarrow \alpha)$ ref. Since it is polymorphic, fp can be used at type (bool \rightarrow bool) ref or (int \rightarrow int) ref, making both uses in the last line type-correct. However, the effect is to assign a boolean function to fp and then apply fp to an int.

Type-checking references (cont.)

Treating an expression of type α ref as a normal polymorphic expression has caused a serious error: an expression that type-checks but has a run-time type error.

How can the type system be fixed?

- Easiest method: do not generalize reference expressions at all make all refs monomorphic
- Method used by OCaml: "value restriction"
 - causes some meaningful polymorphism to fail

The "value restriction"

It turns out that the problem with polymorphic refs can be solved by making this restriction: the type of an expression can be generalized only if the expression is a "syntactic value" – meaning, essentially, that it is either a constant or an abstraction.

Axioms of T_{OCaml}

T_{OCaml} has just one axiom: (Var)

There is no Const axioms; all predefined names are assumed to be in the initial environment (which we continue to notate, by abuse of notation, \emptyset)

```
Rules of inference of T<sub>OCaml</sub>
```

Application and abstraction rules are the same as in T_{simp} . Also add rules for tuples. (Application)

(Abstraction)

Rules of inference of T_{OCaml}

let and letrec are new: (let)

(letrec)

Type-checking references (cont.)

Treating an expression of type α ref as a normal polymorphic expression has caused a serious error: an expression that type-checks but has a run-time type error.

How can the type system be fixed?

- Easiest method: do not generalize reference expressions at all make all refs monomorphic
- Method used by OCaml: "value restriction"