CS 421 Lecture |7 — Functional programming

» Using fold_right and fold_left

» Expression evaluation
» Substitution model

» Scope of definitions
» “Simple” examples

» Combinator programming
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fold_right

fold right £ [, 7x,7...x ] X
= f'}g_ (f X, (... (L X Z) e e.))
fold right : (a->B->B)->(a list)->p->

Use fold right to remove all negative elements from
a list:

fold right lis
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fold left (corrected def)

fold left : (a->B->a)-> a -> [ list -> o
fold left £ =z [Xl;XZ; .. .Xn]
= (... (f (fle) X2) ...) X

Use fold left to compute the length of lis
fold left

Use fold left to compute map flis
fold left
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Defining higher-order functions

let rec fold right f 1lis z =
1f 1lis = [] then z
else £ (hd 1lis)
(fold right £ (tl 1lis) 2z)

Define fold left:
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Evaluation of expressions

Use substitution model — in function calls, substitute actual
parameter for formal parameter in body of function.

* No expressions with free variables evaluated

e Expressions: constants, function definitions (fun x -> e),
application of built-in functions, if, application of user-
defined functions

* let expressions syntactic sugar for function applic; top-
level definitions implicitly in let

 Will handle recursive functions after break; also will
discuss closure model after break
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Evaluation of expressions

Evaluate expression without free variables:

Constant n (int, bool, string, list, ..) = n
Abstraction fun x -> e
Application of built-in operator: el + e2

if el then e2 else e3

Application of user-defined function: el e2
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Example of evaluation

(fun x -=> funy -=> x+y) | 2
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Example of evaluation

(fun x -=> funy -> x y) (funy ->y 4) (fun z -> z+1)

Lecture 17



Free variables

In rule for applications, substitute v for free occurrences of x
in €. Need to define “free occurrence.”

Def. Free occurrences of x in e are those marked with an
overbar after applying free to x and e:

free x e = match e with
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Example of free occurrences

(fun x -=> funy -> x y) (funy ->y 4) (fun z -> z+1)
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Scope rules

4

Programs introduce names via “declarations”, then refer
to those names in “uses.” A given name can be
introduced in more than one declaration, but every use
corresponds to a particular declaration. The question is:
which one!?

The scope of a declaration of a name x is the parts of the
program in which a use of x refers to this declaration

A use of a name is in the scope of a declaration if that use is
in the scope of that declaration

N.B. the scope of a declaration can have holes, where the
declaration is covered up by another declaration of the
same name.
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E.g. Scope rules in Java

class C {
inty
voidf(x){...x...f...y...g...}
voidg () { ...}

}

class D extends C {
int z

voidf(x){...x...f...y...g...}
}

Lecture 17



E.g. Scope rules in OCam|

1 o letx =2

in let f = fun x -> x+x
in f x

2. letx =12
inlety =x
inlet fz=let x=3 in y+z
in fx
3. letx =2
in let add = fun x -> fun y -> x+y
in let addx = add x
inlet x =3 in addx |
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Scope rules in OCaml

Scope rules are implied by expression evaluation rules.
Declarations are just function definitions fun x ->e

Scope of this declaration of x is exactly the free
occurrences of x in e.

(Put differently, a use of a variable x is in the scope of the
closest enclosing function definition for which x is the
formal parameter.)

This is called static scope, or lexical scope, because
the declaration corresponding to any use is
known statically (before run time).
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The scope rule of Lisp

» In Lisp, the declaration associated with a use of a variable
x is determined as follows: at run-time, the most recent
function application that has x as formal parameter (and
which is still on the stack) gives the declaration of x.

» Lisp vs. Ocaml:

let h £ = let x = 3 1n f x

let £ x let g vy = x + vy 1n h g
f 5 =>1
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The scope rule of Lisp

» In Lisp, the declaration associated with a use of a variable
x is determined as follows: at run-time, the most recent
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“Simple” examples

Currying
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“Simple” examples

Reversing arguments
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Combinator-style programming

Can write complex programs by defining a
library of higher-order functions and applying
them to one another (and to first-order or
built-in functions).

Advantage: easy of creating programs —
programs are just expressions

Example: build a parser by writing “parser
combinators”.
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Parser combinators

let token s = fun cl -> if cI=[] then None
else if s=hd cl then Some (tl cl)

else None;;

let (++) p q = fun cl -> match p cl with None -> None

| Some cl' -> q cl;;

let (||) p g = fun cl -> match p cl with None -> q cl

| Some cl' -> Some cl';;

let rec parseA cl = ((token 'a' ++ parseB) || token 'b") cl

and parseB cl = ((token 'c' ++ parseB) || parseA) cl;;

parseA [a;'c’;'c’;'a’;'b’]
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