CS 421 Lecture |7 — Functional programming

» Using fold_right and fold_left

» Expression evaluation
» Substitution model

» Scope of definitions
» “Simple” examples

» Combinator programming

Lecture 17

fold_right

fold right £ [, 7x,7...x] X
= f'}g_ (f X, (... (L X Z) e e.))
fold right : (a->B->B)->(a list)->p->

Use fold right to remove all negative elements from
a list:

fold right lis

Lecture 17

fold left (corrected def)

fold left : (a->B->a)-> a -> [list -> o
fold left £ =z [Xl;XZ; .. .Xn]
= (... (f (fle) X2) ...) X

Use fold left to compute the length of lis
fold left

Use fold left to compute map flis
fold left

Lecture 17

Defining higher-order functions

let rec fold right f 1lis z =
1f 1lis = [] then z
else £ (hd 1lis)
(fold right £ (tl 1lis) 2z)

Define fold left:

Lecture 17

Evaluation of expressions

Use substitution model — in function calls, substitute actual
parameter for formal parameter in body of function.

* No expressions with free variables evaluated

e Expressions: constants, function definitions (fun x -> e),
application of built-in functions, if, application of user-
defined functions

* let expressions syntactic sugar for function applic; top-
level definitions implicitly in let

 Will handle recursive functions after break; also will
discuss closure model after break

Lecture 17

Evaluation of expressions

Evaluate expression without free variables:

Constant n (int, bool, string, list, ..) = n
Abstraction fun x -> e
Application of built-in operator: el + e2

if el then e2 else e3

Application of user-defined function: el e2

Lecture 17

Example of evaluation

(fun x -=> funy -=> x+y) | 2

Lecture 17

Example of evaluation

(fun x -=> funy -> x y) (funy ->y 4) (fun z -> z+1)

Lecture 17

Free variables

In rule for applications, substitute v for free occurrences of x
in €. Need to define “free occurrence.”

Def. Free occurrences of x in e are those marked with an
overbar after applying free to x and e:

free x e = match e with

Lecture 17

Example of free occurrences

(fun x -=> funy -> x y) (funy ->y 4) (fun z -> z+1)

Lecture 17

Scope rules

4

Programs introduce names via “declarations”, then refer
to those names in “uses.” A given name can be
introduced in more than one declaration, but every use
corresponds to a particular declaration. The question is:
which one!?

The scope of a declaration of a name x is the parts of the
program in which a use of x refers to this declaration

A use of a name is in the scope of a declaration if that use is
in the scope of that declaration

N.B. the scope of a declaration can have holes, where the
declaration is covered up by another declaration of the
same name.

Lecture 17

E.g. Scope rules in Java

class C {
inty
voidf(x){...x...f...y...g...}
voidg () { ...}

}

class D extends C {
int z

voidf(x){...x...f...y...g...}
}

Lecture 17

E.g. Scope rules in OCam|

1 o letx =2

in let f = fun x -> x+x
in f x

2. letx =12
inlety =x
inlet fz=let x=3 in y+z
in fx
3. letx =2
in let add = fun x -> fun y -> x+y
in let addx = add x
inlet x =3 in addx |

Lecture 17

Scope rules in OCaml

Scope rules are implied by expression evaluation rules.
Declarations are just function definitions fun x ->e

Scope of this declaration of x is exactly the free
occurrences of x in e.

(Put differently, a use of a variable x is in the scope of the
closest enclosing function definition for which x is the
formal parameter.)

This is called static scope, or lexical scope, because
the declaration corresponding to any use is
known statically (before run time).

Lecture 17

The scope rule of Lisp

» In Lisp, the declaration associated with a use of a variable
x is determined as follows: at run-time, the most recent
function application that has x as formal parameter (and
which is still on the stack) gives the declaration of x.

» Lisp vs. Ocaml:

let h £ = let x = 3 1n f x

let £ x let g vy = x + vy 1n h g
f 5 =>1

Lecture 17

The scope rule of Lisp

» In Lisp, the declaration associated with a use of a variable
x is determined as follows: at run-time, the most recent
function application that has x as formal parameter (and
which is still on the stack) gives the declaration of x.

» Lisp vs. Ocaml:

let h £ = let x = 3 1n f x

let £ x let g vy = x + vy 1n h g
f 5 =>1

Lecture 17

“Simple” examples

Currying

Lecture 17

“Simple” examples

Reversing arguments

Lecture 17

Combinator-style programming

Can write complex programs by defining a
library of higher-order functions and applying
them to one another (and to first-order or
built-in functions).

Advantage: easy of creating programs —
programs are just expressions

Example: build a parser by writing “parser
combinators”.

Lecture 17

Parser combinators

let token s = fun cl -> if cI=[] then None
else if s=hd cl then Some (tl cl)

else None;;

let (++) p q = fun cl -> match p cl with None -> None

| Some cl' -> q cl;;

let (||) p g = fun cl -> match p cl with None -> q cl

| Some cl' -> Some cl';;

let rec parseA cl = ((token 'a' ++ parseB) || token 'b") cl

and parseB cl = ((token 'c' ++ parseB) || parseA) cl;;

parseA [a;'c’;'c’;'a’;'b’]

Lecture 17

