
CS 421 Lecture 17 – Functional programmingCS 421 Lecture 17 Functional programming
Using fold_right and fold_left
Expression evaluationExpression evaluation

Substitution model
Scope of definitionsp

“Simple” examples
Combinator programming

Lecture 17

fold rightfold_right
fold_right f [x1;x2;...xn] x

= f x (f x ((f x z)))= f x1 (f x2 (...(f xn z)...))
fold_right : (α->β->β)->(α list)->β->β

Use fold_right to remove all negative elements from
a list:

fold_right ___________________ lis ____

Lecture 17

fold left (corrected def)fold_left (corrected def)
fold_left : (α->β->α)-> α -> β list -> α
fold left f z [x ;x ; x]fold_left f z [x1;x2;...xn]

= f(... (f (f z x1) x2)...) xn

Use fold_left to compute the length of lis
fold leftfold_left ______________________ ____

Use fold left to compute map f lis_ p p
fold_left ______________________ ____

Lecture 17

Defining higher-order functionsDefining higher order functions

let rec fold_right f lis z =
if li [] thif lis = [] then z
else f (hd lis)

(fold right f (tl lis) z)(fold_right f (tl lis) z)

Define fold left:Define fold_left:

Lecture 17

Evaluation of expressionsEvaluation of expressions

Use substitution model – in function calls, substitute actual
parameter for formal parameter in body of functionparameter for formal parameter in body of function.

• No expressions with free variables evaluated
• Expressions: constants function definitions (fun x -> e) Expressions: constants, function definitions (fun x -> e),

application of built-in functions, if, application of user-
defined functions

• let expressions syntactic sugar for function applic; top-
level definitions implicitly in let

• Will handle recursive functions after break; also will
discuss closure model after break

Lecture 17

Evaluation of expressionsEvaluation of expressions

Evaluate expression without free variables:
C t t (i t b l t i li t) • Constant n (int, bool, string, list, ..) ⇒ n

• Abstraction fun x -> e
• Application of built in operator: e1 + e2• Application of built-in operator: e1 + e2

• if e1 then e2 else e3• if e1 then e2 else e3

• Application of user-defined function: e1 e2Application of user-defined function: e1 e2

Lecture 17

Example of evaluationExample of evaluation

(fun x -> fun y -> x+y) 1 2

Lecture 17

Example of evaluationExample of evaluation

(fun x -> fun y -> x y) (fun y -> y 4) (fun z -> z+1)

Lecture 17

Free variablesFree variables

In rule for applications, substitute v for free occurrences of x
in e’ Need to define “free occurrence ”in e . Need to define free occurrence.

Def. Free occurrences of x in e are those marked with an
overbar after applying free to x and e:pp y g
free x e = match e with

Lecture 17

Example of free occurrencesExample of free occurrences

(fun x -> fun y -> x y) (fun y -> y 4) (fun z -> z+1)

Lecture 17

Scope rulesScope rules
Programs introduce names via “declarations”, then refer
to those names in “uses.” A given name can be to those names in uses. A given name can be
introduced in more than one declaration, but every use
corresponds to a particular declaration. The question is:
which one?
The scope of a declaration of a name x is the parts of the
program in which a use of x refers to this declarationprogram in which a use of x refers to this declaration
A use of a name is in the scope of a declaration if that use is
in the scope of that declarationin the scope of that declaration
N.B. the scope of a declaration can have holes, where the
declaration is covered up by another declaration of the

Lecture 17

same name.

E.g. Scope rules in JavaE.g. Scope rules in Java
class C {

int yint y
void f (x) { … x … f … y … g … }
void g () { … }

}

class D extends C {
int z
void f (x) { x f y g }void f (x) { … x … f … y … g … }

}

Lecture 17

E.g. Scope rules in OCamlE.g. Scope rules in OCaml
1. let x = 2

in let f = fun x > x+xin let f = fun x -> x+x
in f x

2. let x = 2
in let y = x

in let f z = let x=3 in y+z
i f in f x

3. let x = 2
in let add = fun x -> fun y -> x+yin let add = fun x -> fun y -> x+y

in let addx = add x
in let x = 3 in addx 1

Lecture 17

Scope rules in OCamlScope rules in OCaml
Scope rules are implied by expression evaluation rules.
Declarations are just function definitions fun x >eDeclarations are just function definitions fun x ->e
Scope of this declaration of x is exactly the free

occurrences of x in e.
(Put differently, a use of a variable x is in the scope of the

closest enclosing function definition for which x is the
formal parameter.)

This is called static scope, or lexical scope, because
th d l ti di t i the declaration corresponding to any use is
known statically (before run time).

Lecture 17

The scope rule of LispThe scope rule of Lisp
In Lisp, the declaration associated with a use of a variable
x is determined as follows: at run-time, the most recent x is determined as follows: at run time, the most recent
function application that has x as formal parameter (and
which is still on the stack) gives the declaration of x.
Lisp vs. Ocaml:

let h f = let x = 3 in f x
let f x = let g y = x + y in h g

f 5 => ?

Lecture 17

The scope rule of LispThe scope rule of Lisp
In Lisp, the declaration associated with a use of a variable
x is determined as follows: at run-time, the most recent x is determined as follows: at run time, the most recent
function application that has x as formal parameter (and
which is still on the stack) gives the declaration of x.
Lisp vs. Ocaml:

let h f = let x = 3 in f x
let f x = let g y = x + y in h g

f 5 => ?

Lecture 17

“Simple” examplesSimple examples

Currying

Lecture 17

“Simple” examplesSimple examples

Reversing arguments

Lecture 17

Combinator-style programmingCombinator style programming

Can write complex programs by defining a
librar f hi her rder f ncti ns and a l in library of higher-order functions and applying
them to one another (and to first-order or
built in functions)built-in functions).

Advantage: easy of creating programs –
 j iprograms are just expressions

Example: build a parser by writing “parser
combinators”.

Lecture 17

Parser combinatorsParser combinators
let token s = fun cl -> if cl=[] then None

else if s=hd cl then Some (tl cl)

else None;;

let (++) p q = fun cl -> match p cl with None -> None() p q p

| Some cl' -> q cl';;

let (||) p q = fun cl -> match p cl with None -> q cllet (||) p q fun cl match p cl with None q cl

| Some cl' -> Some cl';;

let rec parseA cl = ((token 'a' ++ parseB) || token 'b') cllet rec parseA cl = ((token a ++ parseB) || token b) cl

and parseB cl = ((token 'c' ++ parseB) || parseA) cl;;

Lecture 17

parseA ['a';'c';'c';'a';'b‘]

