
Dynamic scope in Lisp
Supplementary notes for lecture 17, CS 421 (spring, 2009)

S. Kamin

This note fills in a topic that was supposed to have been covered in class but wasn’t. Specifically, the
topic is mentioned in lecture 17 on slide 15. Because it wasn’t covered in class, you will not be
responsible for it on the exam. But, aside from historical interest, understanding dynamic scope will help
you better understand static scope, so I’m providing this explanation which I hope you will read.

Static, or lexical, scope is most natural and familiar to all programmers. Static scope just means that,
when you see a name being used in a program, you can point to the corresponding declaration of that
name: the correspondence, or binding, is determined by the text of the program. For the most part, in
common programming languages, the use of a name is bound to the closest enclosing declaration of that
name.

For example, in Java, if a method has a local variable named x and a field named x, uses of x inside the
method are bound to the local declaration. In Ocaml, if there is a function called f defined at the top level,
but an expression defines and uses f locally – as in “let f x = … in … f …” – then the local use of f is
bound to the local definition.

Finding the declaration of a name may involve looking in different source files – for example, in OCaml,
you have to look at included modules, and in Java, you have to look at other files in the current and
imported packages. But as long as the source code is available, you can in principle point to a specific
declaration of each name.

There is a common exception to this rule in object-oriented languages. Dynamic binding is used for
virtual functions (those declared virtual in C++, or any method in Java). Because of inheritance, a
method call “x.m()” may refer to one of several methods named m. If you have all of the program text,
you can determine the set of all methods that might be bound to this use, although a programmer can
always add to that list by adding a new subclass and overriding m. But you cannot, in general, point to
one declaration of m that is bound to this use. This form of dynamic binding leads to difficulties in
understanding and reasoning about programs, but it lies at the very heart of object-oriented programming;
it was what allows for significant code re-use. Therefore, it is generally considered a Good Thing.

The original version of Lisp also used (a different form of) dynamic binding. Although this form of
dynamic binding, which I will now explain, does allow for some helpful uses, it is widely considered to
be a mistake. John McCarthy has acknowledged that it was introduced somewhat unconsciously; it is the
form of binding that you get by using an obvious, but incorrect, implementation of user-defined functions.

The binding rule in Lisp is this: a use of a name is bound to the most recent declaration of that name
that is still live.

For a declaration to be live normally means that the function that includes that declaration has not
finished executing. This notion corresponds to the usual, stack-like function call and return. For this
reason, the Lisp dynamic scope rule is normally the same as static scope.

However, higher-order functions throw a wrench in the works. Consider this function (using OCaml
syntax):

 let add = fun x -> fun y -> x+y

and this application:

 let add3 = add 3

The weird thing is this: Function add is called, and it returns, but the declaration of its parameter, x, is
still live in the sense that the return value – the function “fun y -> x+y” – contains a reference to it.

(In the substitution model, we avoid the entire issue by replacing x by 3 and returning function “fun y ->
3+y,” so there is no live use of x. But, as noted in class, the substitution model does not reflect how
languages are really implemented. This will be clearer when we discuss the closure model in detail.)

If we think of add2 as having value “fun y -> x+y”, then the question becomes this: at the moment add3
is applied – which may be much later – where will it get the value of x? Here, the answer given by Lisp
is different from Ocaml’s. In OCaml, x will be 3 whenever add3 is applied – this works in both the
substitution and closure models, as well, of course, as the implementation of OCaml. In Lisp, it will
depend on whether there is a more recent, live declaration of x. Specifically, consider this case:

 let add = fun x -> fun y -> x+y;;
 let add3 = add 3;;
 let f x = add3 x;;
 f 4;;

Under dynamic binding: When add3 is applied in the body of f, there is a live declaration of x – the
parameter of f – that is bound to x. It has value 4. Since this is the most recent binding of x at the time
add3 is applied, and since it is still live when add3 is applied, it is the binding used inside add3. Thus, f 4
returns 8.

Under static binding (i.e. in OCaml), f 5 will of course return 7.

Here is another example:

let h f = let x = 3 in f x;;
let f x = let g y = x + y in h g;;
f 5;;

Under static binding, in the call f 5, g becomes “fun y -> 5+y”. This is passed to h, so the call “h g”
becomes “let x=3 in (fun y -> 5+y) x”, which is the same as “(fun y -> 5+y) 3”, which evaluates to 8.
Under dynamic binding, g is just “fun y -> x+y”, and the call “h g” becomes “let x=3 in (fun y -> x+y) x”.
Both values of x are 3 and the value of the expression is 6.

The problem with dynamic scope here is that it renders the action of higher-order functions like add and h
completely unpredictable. If a higher-order function is used in a context where some function with a local
variable with the wrong name happens to be on the stack, the higher-order function will behave
differently. Because of this unpredictability, higher-order functions become nearly useless. And because
higher-order functions are potentially very useful, the use of dynamic scope in Lisp is considered an error
in the language design.

