Programming Languages and Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha
Dealing with comments

First Attempt

let open_comment = "(*)"
let close_comment = "*)"

rule main = parse
 (digits) '.' digits as f { Float (float_of_string f) :: main lexbuf}
| digits as n { Int (int_of_string n) :: main lexbuf }
| letters as s { String s :: main lexbuf}
Dealing with comments

<table>
<thead>
<tr>
<th>open_comment</th>
<th>{ comment lexbuf }</th>
</tr>
</thead>
<tbody>
<tr>
<td>eof</td>
<td>{ [] }</td>
</tr>
<tr>
<td>_</td>
<td>{ main lexbuf }</td>
</tr>
</tbody>
</table>

and comment = parse

<table>
<thead>
<tr>
<th>close_comment</th>
<th>{ main lexbuf }</th>
</tr>
</thead>
<tbody>
<tr>
<td>_</td>
<td>{ comment lexbuf }</td>
</tr>
</tbody>
</table>
Dealing with nested comments

rule main = parse ...
 | open_comment { comment 1 lexbuf}
 | eof { [] }
 | _ { main lexbuf }
and comment depth = parse
 open_comment { comment (depth+1) lexbuf }
 | close_comment { if depth = 1
 then main lexbuf
 else comment (depth - 1) lexbuf }
 | _ { comment depth lexbuf }
Dealing with nested comments

rule main = parse
 (digits) '!' digits as f { Float (float_of_string f) ::
 main lexbuf}
| digits as n { Int (int_of_string n) :: main lexbuf }
| letters as s { String s :: main lexbuf }
| open_comment { (comment 1 lexbuf}
| eof { [] } }
| _ { main lexbuf }
Dealing with nested comments

and comment depth = parse
 open_comment { comment (depth+1) lexbuf }
| close_comment { if depth = 1
 then main lexbuf
 else comment (depth - 1) lexbuf }
| _ { comment depth lexbuf }
Types of Formal Language Descriptions

- Regular expressions, regular grammars
- Context-free grammars, BNF grammars, syntax diagrams
- Finite state automata

- Whole family more of grammars and automata – covered in automata theory
Sample Grammar

- Language: Parenthesized sums of 0’s and 1’s

 - `<Sum>` ::= 0
 - `<Sum>` ::= 1
 - `<Sum>` ::= `<Sum>` + `<Sum>`
 - `<Sum>` ::= (`<Sum>`)
BNF Grammars

- Start with a set of characters, \(a, b, c, \ldots \)
 - We call these *terminals*
- Add a set of different characters, \(X, Y, Z, \ldots \)
 - We call these *nonterminals*
- One special nonterminal \(S \) called *start symbol*
BNF Grammars

- BNF rules (aka *productions*) have form
 \[X ::= y \]
 where \(X \) is any nonterminal and \(y \) is a string of terminals and nonterminals

- BNF *grammar* is a set of BNF rules such that every nonterminal appears on the left of some rule
Sample Grammar

- Terminals: 0 1 + ()
- Nonterminals: <Sum>
- Start symbol = <Sum>

- <Sum> ::= 0
- <Sum> ::= 1
- <Sum> ::= <Sum> + <Sum>
- <Sum> ::= (<Sum>)
- Can be abbreviated as
 - <Sum> ::= 0 | 1
 - | <Sum> + <Sum> | ()
BNF Derivations

- Given rules
 \[X ::= yZw \text{ and } Z ::= v \]
 we may replace \(Z \) by \(v \) to say
 \[X \Rightarrow yZw \Rightarrow yvw \]

- Sequence of such replacements called *derivation*

- Derivation called *right-most* if always replace the right-most non-terminal
BNF Derivations

- Start with the start symbol:

<Sum> =>
BNF Derivations

- Pick a non-terminal

<Sum> =>
BNF Derivations

- Pick a rule and substitute:
 - `<Sum> ::= <Sum> + <Sum>`

 `<Sum>` => `<Sum> + <Sum>`
BNF Derivations

- Pick a non-terminal:

\[\text{<Sum>} \Rightarrow \text{<Sum>} + \text{<Sum>} \]
BNF Derivations

- Pick a rule and substitute:
 - `<Sum> ::= (<Sum>)`

 `<Sum> => <Sum> + <Sum>`

 `=> (<Sum>) + <Sum>`
BNF Derivations

Pick a non-terminal:

\[\text{<Sum>} \implies \text{<Sum>} + \text{<Sum> } \]
\[\implies (\text{<Sum>}) + \text{<Sum>} \]
BNF Derivations

- Pick a rule and substitute:
 - `<Sum> ::= <Sum> + <Sum>`

 `<Sum> => <Sum> + <Sum>`

 `=> (<Sum>) + <Sum>`

 `=> (<Sum> + <Sum>) + <Sum>`
BNF Derivations

- Pick a non-terminal:

\[
\text{<Sum>} \Rightarrow \text{<Sum>} + \text{<Sum>}
\]

\[
\Rightarrow (\text{<Sum>}) + \text{<Sum>}
\]

\[
\Rightarrow (\text{<Sum>} + \text{<Sum>}) + \text{<Sum>}
\]
BNF Derivations

- Pick a rule and substitute:
 - `<Sum> ::= 1`

 `<Sum> => <Sum> + <Sum>
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>`
BNF Derivations

- Pick a non-terminal:

\[<\text{Sum}> \Rightarrow <\text{Sum}> + <\text{Sum}> \]
\[\Rightarrow (<\text{Sum}>) + <\text{Sum}> \]
\[\Rightarrow (<\text{Sum}> + <\text{Sum}>) + <\text{Sum}> \]
\[\Rightarrow (<\text{Sum}> + 1) + <\text{Sum}> \]
BNF Derivations

- Pick a rule and substitute:
 - \(<\text{Sum}\>::= 0\)

\(<\text{Sum}\> \Rightarrow \ <\text{Sum}\> \ + \ <\text{Sum}\> \)

\Rightarrow (\ <\text{Sum}\>) \ + \ <\text{Sum}\>

\Rightarrow (\ <\text{Sum}\> \ + \ <\text{Sum}\>) \ + \ <\text{Sum}\>

\Rightarrow (\ <\text{Sum}\> \ + \ 1\) \ + \ <\text{Sum}\>

\Rightarrow (\ <\text{Sum}\> \ + \ 1\) \ + \ 0
BNF Derivations

Pick a non-terminal:

\[
<\text{Sum}> \Rightarrow <\text{Sum}> + <\text{Sum}>
\]

\[
\Rightarrow (<\text{Sum}>) + <\text{Sum}>
\]

\[
\Rightarrow (<\text{Sum}> + <\text{Sum}>) + <\text{Sum}>
\]

\[
\Rightarrow (<\text{Sum} > + 1) + <\text{Sum}>
\]

\[
\Rightarrow (<\text{Sum} > + 1) + 0
\]
BNF Derivations

- Pick a rule and substitute
 - `<Sum> ::= 0`

 `<Sum> => <Sum> + <Sum>`

 `=> (<Sum>) + <Sum>`

 `=> (<Sum> + <Sum>) + <Sum>`

 `=> (<Sum> + 1) + <Sum>`

 `=> (<Sum> + 1) 0`

 `=> (0 + 1) + 0`
BNF Derivations

- \((0 + 1) + 0\) is generated by grammar

\[
\text{<Sum>} \Rightarrow \text{<Sum>} + \text{<Sum>}
\]

\[
\Rightarrow (\text{<Sum>}) + \text{<Sum>}
\]

\[
\Rightarrow (\text{<Sum>} + \text{<Sum>}) + \text{<Sum>}
\]

\[
\Rightarrow (\text{<Sum>} + 1) + \text{<Sum>}
\]

\[
\Rightarrow (\text{<Sum>} + 1) + 0
\]

\[
\Rightarrow (0 + 1) + 0
\]
<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

<Sum> =>
BNF Semantics

- The meaning of a BNF grammar is the set of all strings consisting only of terminals that can be derived from the Start symbol.
Regular Grammars

- Subclass of BNF
- Only rules of form
 \[<\text{nonterminal}> ::= <\text{terminal}> <\text{nonterminal}> \text{ or } <\text{nonterminal}> ::= <\text{terminal}> \text{ or } <\text{nonterminal}> ::= \varepsilon \]
- Defines same class of languages as regular expressions
- Important for writing lexers (programs that convert strings of characters into strings of tokens)
Example

- Regular grammar:
 \[
 \begin{align*}
 \langle \text{Balanced} \rangle & ::= \varepsilon \\
 \langle \text{Balanced} \rangle & ::= 0 \langle \text{OneAndMore} \rangle \\
 \langle \text{Balanced} \rangle & ::= 1 \langle \text{ZeroAndMore} \rangle \\
 \langle \text{OneAndMore} \rangle & ::= 1 \langle \text{Balanced} \rangle \\
 \langle \text{ZeroAndMore} \rangle & ::= 0 \langle \text{Balanced} \rangle
 \end{align*}
 \]

- Generates even length strings where every initial substring of even length has same number of 0’s as 1’s
Extended BNF Grammars

- Alternatives: allow rules of from $X ::= y/z$
 - Abbreviates $X ::= y, X ::= z$
- Options: $X ::= y[v]z$
 - Abbreviates $X ::= yvz, X ::= yz$
- Repetition: $X ::= y\{v\}^*z$
 - Can be eliminated by adding new nonterminal V and rules $X ::= yz, X ::= yVz, V ::= v, V ::= VW$
Parse Trees

- Graphical representation of derivation
- Each node labeled with either non-terminal or terminal
- If node is labeled with a terminal, then it is a leaf (no sub-trees)
- If node is labeled with a non-terminal, then it has one branch for each character in the right-hand side of rule used to substitute for it
Example

- Consider grammar:

 $$
 \text{<exp>} \ ::= \text{<factor>}

 | \text{<factor>} + \text{<factor>}

 \text{<factor>} \ ::= \text{<bin>}

 | \text{<bin>} * \text{<exp>}

 \text{<bin>} \ ::= 0 \mid 1
 $$

- Problem: Build parse tree for $$1 \ast 1 + 0$$ as an <exp>
Example cont.

1 * 1 + 0: <exp>

<exp> is the start symbol for this parse tree
Example cont.

1 * 1 + 0: \[<exp> \begin{array}{c}
\mid \\
<factor> \end{array}\]

Use rule: \[<exp> ::= <factor>\]
Example cont.

1 * 1 + 0: \[<exp> \]

\[<factor> \]

\[<bin> * <exp>\]

Use rule: \[<factor> ::= <bin> * <exp> \]
Example cont.

1 * 1 + 0: \[\text{<exp>} \]

\begin{verbatim}
<bin> * <exp>
\end{verbatim}

\begin{verbatim}
1 <factor> + <factor>
\end{verbatim}

Use rules: \[<bin> ::= 1 \quad \text{and} \quad <exp> ::= <factor> + <factor> \]
Example cont.

- $1 \times 1 + 0$:

 $\begin{array}{c}
 \text{<exp>}
 \\
 \text{<factor>}
 \\
 \text{<bin>} \times \text{<exp>}
 \\
 1 \text{<factor>} + \text{<factor>}
 \\
 \text{<bin>} \text{<bin>}
 \end{array}$

Use rule: $\text{<factor>} ::= \text{<bin>}$
Example cont.

1 * 1 + 0:

Use rules: \(<bin> ::= 1 \mid 0\)
Example cont.

- $1 \times 1 + 0$:

 Fringe of tree is string generated by grammar
Your Turn: $1 \times 0 + 0 \times 1$
Parse Tree Data Structures

- Parse trees may be represented by OCaml datatypes
- One datatype for each nonterminal
- One constructor for each rule
- Defined as mutually recursive collection of datatype declarations
Example

- Recall grammar:

 \[\langle \text{exp} \rangle \ ::= \langle \text{factor} \rangle \ | \ \langle \text{factor} \rangle + \ \langle \text{factor} \rangle \]

 \[\langle \text{factor} \rangle \ ::= \langle \text{bin} \rangle \ | \ \langle \text{bin} \rangle * \ \langle \text{exp} \rangle \]

 \[\langle \text{bin} \rangle ::= 0 \ | \ 1 \]

- type exp = Factor2Exp of factor

 \[\text{Plus of factor * factor} \]

 and factor = Bin2Factor of bin

 \[\text{Mult of bin * exp} \]

 and bin = Zero \ | \ One
Example cont.

\[1 \times 1 + 0: \]

```
<exp>  
  <factor>  
    *  
    <exp>  
      <factor>  
        +  
        <factor>  
          <bin>  
            1  
          <bin>  
            1  
          <bin>  
            0
```
Example cont.

- Can be represented as

```
Factor2Exp
(Mult(One,
    Plus(Bin2Factor One,
        Bin2Factor Zero)))
```
Ambiguous Grammars and Languages

- A BNF grammar is *ambiguous* if its language contains strings for which there is more than one parse tree.
- If all BNF’s for a language are ambiguous then the language is *inherently ambiguous*.
Example: Ambiguous Grammar

\[0 + 1 + 0 \]
Example

What is the result for:

\[3 + 4 \times 5 + 6 \]
Example

What is the result for:

$$3 + 4 \times 5 + 6$$

Possible answers:

- $$41 = ((3 + 4) \times 5) + 6$$
- $$47 = 3 + (4 \times (5 + 6))$$
- $$29 = (3 + (4 \times 5)) + 6 = 3 + ((4 \times 5) + 6)$$
- $$77 = (3 + 4) \times (5 + 6)$$
Example

What is the value of:

\[7 - 5 - 2 \]
Example

What is the value of:

7 – 5 – 2

Possible answers:

In Pascal, C++, SML assoc. left
7 – 5 – 2 = (7 – 5) – 2 = 0

In APL, associate to right
7 – 5 – 2 = 7 – (5 – 2) = 4
Two Major Sources of Ambiguity

- Lack of determination of operator precedence
- Lack of determination of operator associativity

Not the only sources of ambiguity
Disambiguating a Grammar

- Given ambiguous grammar G, with start symbol S, find a grammar G' with same start symbol, such that

 \[\text{language of } G = \text{language of } G' \]

- Not always possible

- No algorithm in general
Disambiguating a Grammar

- Idea: Each non-terminal represents all strings having some property
- Identify these properties (often in terms of things that can’t happen)
- Use these properties to inductively guarantee every string in language has a unique parse
Example

- Ambiguous grammar:
 \[
 \text{<exp>} ::= 0 \mid 1 \mid \text{<exp>} + \text{<exp>}
 \mid \text{<exp>} * \text{<exp>}
 \]

- String with more then one parse:
 \[
 0 + 1 + 0 \\
 1 * 1 + 1
 \]

- Source of ambiguity: associativity and precedence
Two Major Sources of Ambiguity

- Lack of determination of operator precedence
- Lack of determination of operator associativity

- Not the only sources of ambiguity
How to Enforce Associativity

- Have at most one recursive call per production

- When two or more recursive calls would be natural leave right-most one for right associativity, left-most one for left associativity
Example

- $\langle\text{Sum}\rangle ::= 0 \mid 1 \mid \langle\text{Sum}\rangle + \langle\text{Sum}\rangle$
- $\langle\text{Sum}\rangle + (\langle\text{Sum}\rangle)$

Becomes

- $\langle\text{Sum}\rangle ::= \langle\text{Num}\rangle \mid \langle\text{Num}\rangle + \langle\text{Sum}\rangle$
- $\langle\text{Num}\rangle ::= 0 \mid 1 \mid (\langle\text{Sum}\rangle)$
Operator Precedence

- Operators of highest precedence evaluated first (bind more tightly).

- Precedence for infix binary operators given in following table

- Needs to be reflected in grammar
Precedence Table - Sample

<table>
<thead>
<tr>
<th></th>
<th>Fortan</th>
<th>Pascal</th>
<th>C/C++</th>
<th>Ada</th>
<th>SML</th>
</tr>
</thead>
<tbody>
<tr>
<td>highest</td>
<td>**</td>
<td>*, /, div, mod</td>
<td>++, --</td>
<td>**</td>
<td>div, mod, /, *</td>
</tr>
<tr>
<td></td>
<td>*, /</td>
<td>+, -</td>
<td>*, /, %</td>
<td>*, /, mod</td>
<td>+, -, ^</td>
</tr>
<tr>
<td></td>
<td>+, -</td>
<td>+, -</td>
<td>+, -</td>
<td>+, -</td>
<td>::</td>
</tr>
</tbody>
</table>
First Example Again

- In any above language, $3 + 4 \times 5 + 6 = 29$
- In APL, all infix operators have same precedence
 - Thus we still don’t know what the value is (handled by associativity)
- How do we handle precedence in grammar?
Higher precedence translates to longer derivation chain

Example:
<exp> ::= 0 | 1 | <exp> + <exp>
 | <exp> * <exp>

Becomes
<exp> ::= <mult_exp>
 | <exp> + <exp>
<mult_exp> ::= <id> | <mult_exp> * <id>
=id> ::= 0 | 1