Programming Languages and Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421
Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Example Regular Expressions
- \((0 \lor 1)^*1\)
 - The set of all strings of 0’s and 1’s ending in 1, \(\{1, 01, 11, \ldots\}\)
- \(a^*b(a^*)\)
 - The set of all strings of a’s and b’s with exactly one b
- \(((01) \lor (10))^*\)
 - You tell me

Regular expressions (equivalently, regular grammars) important for lexing, breaking strings into recognized words

Regular Grammars
- Subclass of BNF (covered in detail sool)
- Only rules of form "<nonterminal> ::= <terminal> | <nonterminal> | <nonterminal> ::= ε"
- Defines same class of languages as regular expressions
- Important for writing lexers (programs that convert strings of characters into strings of tokens)
- Close connection to nondeterministic finite state automata – nonterminals \(\equiv\) states; rule \(\equiv\) edge

Example: Lexing
- Regular expressions good for describing lexemes (words) in a programming language
 - Identifier = \((a \lor b \lor \ldots \lor z \lor A \lor B \lor \ldots \lor Z)(a \lor b \lor \ldots \lor z \lor A \lor B \lor \ldots \lor Z \lor 0 \lor 1 \lor \ldots \lor 9)^*\)
 - Digit = \((0 \lor 1 \lor \ldots \lor 9)\)
 - Number = \(0 \lor (1 \lor \ldots \lor 9)(0 \lor \ldots \lor 9)^* \lor (1 \lor \ldots \lor 9)(0 \lor \ldots \lor 9)^*\)
 - Keywords: if = if, while = while, ...

Implementing Regular Expressions
- Regular expressions reasonable way to generate strings in language
- Not so good for recognizing when a string is in language
- Problems with Regular Expressions
 - which option to choose,
 - how many repetitions to make
- Answer: finite state automata
- Should have seen in CS374
Lexing

Different syntactic categories of “words”: tokens
Example:
Convert sequence of characters into sequence of strings, integers, and floating point numbers.
“asd 123 jkl 3.14” will become:
[String "asd"; Int 123; String "jkl"; Float 3.14]

Lex, ocamllex

Could write the reg exp, then translate to DFA by hand
A lot of work
Better: Write program to take reg exp as input and automatically generates automata
Lex is such a program
ocamllex version for ocaml

How to do it

To use regular expressions to parse our input we need:
- Some way to identify the input string — call it a lexing buffer
- Set of regular expressions,
- Corresponding set of actions to take when they are matched.

The lexer will take the regular expressions and generate a state machine.
The state machine will take our lexing buffer and apply the transitions...
If we reach an accepting state from which we can go no further, the machine will perform the appropriate action.

Mechanics

Put table of reg exp and corresponding actions (written in ocaml) into a file <filename>.mll
Call
 ocamllex <filename>.mll
Produces Ocaml code for a lexical analyzer in file <filename>.ml

Sample Input

rule main = parse
 [0-9]+ { print_string "Int\n"}
 | [0-9]+.[0-9]+ { print_string "Float\n"}
 | [a-zA-Z]+ { print_string "String\n"}
 | _ { main lexbuf }
 { let newlexbuf = (Lexing.from_channel stdin) in
 print_string "Ready to lex.\n"
 main newlexbuf
 }

General Input

```ocaml
{ header }
let ident = regexp ...
rule entrypoint [arg1... argn] = parse
  regexp { action }
| ...
| regexp { action }
and entrypoint [arg1... argn] = parse ...
{ trailer }
```

Ocamllex Input

- `<filename>.ml` contains one lexing function per `entrypoint`
 - Name of function is name given for `entrypoint`
 - Each entry point becomes an Ocaml function that takes $n+1$ arguments, the extra implicit last argument being of type `Lexing.lexbuf`
 - `arg1... argn` are for use in `action`

Ocamllex Regular Expression

- Single quoted characters for letters: `'a'`
- `_`: (underscore) matches any letter
- `Eof`: special “end_of_file” marker
- Concatenation same as usual
- “string”: concatenation of sequence of characters
- $e_1 | e_2$: choice - what was $e_1 \lor e_2$
- `[c_1 - c_2]`: choice of any character between first and second inclusive, as determined by character codes
- `[^c_1 - c_2]`: choice of any character NOT in set
- `e*`: same as before
- `e+`: same as $e \cdot e*$
- `e?`: option - was $e_1 \lor \varepsilon$
- $e_1 \# e_2$: the characters in e_1 but not in e_2; e_1 and e_2 must describe just sets of characters
- `ident`: abbreviation for earlier reg exp in let `ident = regexp`
- e_1 as `id`: binds the result of e_1 to `id` to be used in the associated `action`
Ocamllex Manual

More details can be found at

Example : test.mll

```ocaml
{ type result = Int of int | Float of float | String of string }

let digit = ['0'-'9']
let digits = digit +
let lower_case = ['a'-'z']
let upper_case = ['A'-'Z']
let letter = upper_case | lower_case
let letters = letter +
```

Example

```ocaml
# #use "test.ml";;
...
val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec : Lexing.lexbuf -> int -> result = <fun>
Ready to lex.
hi there 234 5.2
- : result = String "hi"
```

Your Turn

- Work on ML4
 - Add a few keywords
 - Implement booleans and unit
 - Implement Ints and Floats
 - Implement identifiers
Problem
- How to get lexer to look at more than the first token at one time?
- One Answer: action tells it to -- recursive calls
- Side Benefit: can add “state” into lexing
- Note: already used this with the _ case

Example

```
rule main = parse
  (digits) '.' digits as f { Float (float_of_string f) :: main lexbuf}
  | digits as n          { Int (int_of_string n) :: main lexbuf }
  | letters as s         { String s :: main lexbuf}
  | eof                     { [] } 
  | _                        { main lexbuf } 
```

Example Results
Ready to lex.
hi there 234 5.2
- : result list = [String "hi"; String "there"; Int 234; Float 5.2]

```
Used Ctrl-d to send the end-of-file signal
```

Dealing with comments

```
| open_comment         { comment lexbuf} 
| eof                        { [] } 
| _ { main lexbuf} 
and comment = parse
  | close_comment         { main lexbuf } 
| _                        { comment lexbuf } 
```

Dealing with comments

```
First Attempt
let open_comment = "(*" 
let close_comment = ")"
rule main = parse
  (digits) '.' digits as f { Float (float_of_string f) :: main lexbuf}
  | digits as n          { Int (int_of_string n) :: main lexbuf }
  | letters as s         { String s :: main lexbuf}
  | eof                     { [] } 
  | _                        { main lexbuf } 
```

```
Used Ctrl-d to send the end-of-file signal
```

Dealing with nested comments

```
rule main = parse ... 
  | open_comment         { comment 1 lexbuf} 
  | eof                        { [] } 
  | _ { main lexbuf} 
and comment depth = parse
  | open_comment         { comment (depth+1) lexbuf } 
  | close_comment         { if depth = 1 then main lexbuf else comment (depth - 1) lexbuf } 
  | _                        { comment depth lexbuf } 
```
Dealing with nested comments

rule main = parse
 (digits) '.' digits as f { Float(float_of_string f) ::
 main lexbuf}
 | digits as n { Int(int_of_string n) :: main
 lexbuf }
 | letters as s { String s :: main lexbuf}
 | open_comment { (comment 1 lexbuf}
 | eof { [] }
 | _ { main lexbuf }

Dealing with nested comments

and comment depth = parse
 open_comment { comment (depth+1) lexbuf }
 | close_comment { if depth = 1
 then main lexbuf
 else comment (depth - 1) lexbuf }
 | _ { comment depth lexbuf }

Types of Formal Language Descriptions

- Regular expressions, regular grammars
- Context-free grammars, BNF grammars, syntax diagrams
- Finite state automata

Whole family more of grammars and automata – covered in automata theory

Sample Grammar

- Language: Parenthesized sums of 0’s and 1’s
 - <Sum> ::= 0
 - <Sum> ::= 1

 - <Sum> ::= <Sum> + <Sum>
 - <Sum> ::= (<Sum>)

BNF Grammars

- Start with a set of characters, \texttt{a,b,c,...}
 - We call these \textit{terminals}
- Add a set of different characters, \texttt{X,Y,Z}, ...
 - We call these \textit{nonterminals}
- One special nonterminal \texttt{S} called \textit{start symbol}

BNF Grammars

- BNF rules (aka \textit{productions}) have form
 \[X ::= y \]
 where \texttt{X} is any nonterminal and \texttt{y} is a string of terminals and nonterminals
- BNF \textit{grammar} is a set of BNF rules such that every nonterminal appears on the left of some rule
Sample Grammar

- Terminals: 0 1 + ()
- Nonterminals: <Sum>
- Start symbol = <Sum>

- <Sum> ::= 0
- <Sum> ::= 1
- <Sum> ::= <Sum> + <Sum>
- <Sum> ::= (<Sum>)
- Can be abbreviated as
 - <Sum> ::= 0 | 1
 - | <Sum> + <Sum> | (<Sum>)

BNF Derivations

- Given rules
 \[X ::= yZw \quad \text{and} \quad Z ::= v \]
 we may replace \(Z \) by \(v \) to say
 \[X \rightarrow yZw \rightarrow yvw \]

- Sequence of such replacements called derivation

- Derivation called right-most if always replace the right-most non-terminal

BNF Derivations

- Start with the start symbol:
 \[<Sum> \rightarrow \]

BNF Derivations

- Pick a non-terminal:
 \[<Sum> \rightarrow \]

BNF Derivations

- Pick a rule and substitute:
 - \[<Sum> ::= <Sum> + <Sum> \]
 \[<Sum> \rightarrow <Sum> + <Sum> \]
BNF Derivations

- Pick a rule and substitute:
 - `<Sum> ::= (<Sum>)`
 - `<Sum> => <Sum> + <Sum>`
 - `=> (<Sum>) + <Sum>`

BNF Derivations

- Pick a non-terminal:
 - `<Sum> ::= <Sum> + <Sum>`
 - `<Sum> => <Sum> + <Sum>`
 - `=> (<Sum>) + <Sum>`
 - `=> (<Sum> + <Sum>) + <Sum>`

BNF Derivations

- Pick a rule and substitute:
 - `<Sum> ::= 1`
 - `<Sum> => <Sum> + <Sum>`
 - `=> (<Sum>) + <Sum>`
 - `=> (<Sum> + <Sum>) + <Sum>`
 - `=> (<Sum> + 1) + <Sum>`

BNF Derivations

- Pick a non-terminal:
 - `<Sum> ::= <Sum> + <Sum>`
 - `<Sum> => <Sum> + <Sum>`
 - `=> (<Sum>) + <Sum>`
 - `=> (<Sum> + <Sum>) + <Sum>`
 - `=> (<Sum> + 1) + <Sum>`
BNF Derivations

- Pick a rule and substitute:
 - `<Sum> ::= 0`
 - `<Sum> ::= (<Sum> + <Sum>)`
 - `<Sum> ::= (<Sum> + 1) + <Sum>`

- Pick a non-terminal:
 - `<Sum> ::= 0`
 - `<Sum> ::= (<Sum> + <Sum>)`
 - `<Sum> ::= (<Sum> + 1) + <Sum>`

- (0 + 1) + 0 is generated by grammar

BNF Semantics

The meaning of a BNF grammar is the set of all strings consisting only of terminals that can be derived from the Start symbol.
Regular Grammars
- Subclass of BNF
- Only rules of form
 \[\text{<nonterminal>} ::= \text{<terminal>} \text{<nonterminal>} \]
 or
 \[\text{<nonterminal>} ::= \varepsilon \]
- Defines same class of languages as regular expressions
- Important for writing lexers (programs that convert strings of characters into strings of tokens)
- Close connection to nondeterministic finite state automata – nonterminals \(\equiv \) states; rule \(\equiv \) edge

Example
- Regular grammar:
 \[\text{<Balanced>} ::= \varepsilon \]
 \[\text{<Balanced>} ::= 0\text{<OneAndMore>} \]
 \[\text{<Balanced>} ::= 1\text{<ZeroAndMore>} \]
 \[\text{<OneAndMore>} ::= 1\text{<Balanced>} \]
 \[\text{<ZeroAndMore>} ::= 0\text{<Balanced>} \]
- Generates even length strings where every initial substring of even length has same number of 0’s as 1’s

Extended BNF Grammars
- Alternatives: allow rules of from \(X ::= y | z \)
 - Abbreviates \(X ::= y, X ::= z \)
- Options: \(X ::= [v]z \)
 - Abbreviates \(X ::= yvz, X ::= yz \)
- Repetition: \(X ::= y\{v\}^*z \)
 - Can be eliminated by adding new nonterminal \(V \) and rules \(X ::= yz, X ::= yVz, V ::= v, V ::= vV \)

Parse Trees
- Graphical representation of derivation
- Each node labeled with either non-terminal or terminal
- If node is labeled with a terminal, then it is a leaf (no sub-trees)
- If node is labeled with a non-terminal, then it has one branch for each character in the right-hand side of rule used to substitute for it

Example
- Consider grammar:
 \[\text{<exp>} ::= \text{<factor>} \]
 \[\text{<factor>} ::= \text{<bin>} \]
 \[\text{<bin>} ::= 0 | 1 \]
- Problem: Build parse tree for \(1 * 1 + 0 \) as an \text{<exp>}

Example cont.
- \(1 * 1 + 0: \text{<exp>} \)
 \[\text{<exp>} \text{ is the start symbol for this parse tree} \]
Example cont.

1 * 1 + 0: `<exp>`

`<factor>`

Use rule: `<exp>` ::= `<factor>`
Your Turn: $1 * 0 + 0 * 1$

Parse Tree Data Structures

- Parse trees may be represented by OCaml datatypes
- One datatype for each nonterminal
- One constructor for each rule
- Defined as mutually recursive collection of datatype declarations

Example

- Recall grammar:
 \[
 \begin{align*}
 <\text{exp}> & ::= <\text{factor}> \mid <\text{factor}> + <\text{factor}> \\
 <\text{factor}> & ::= <\text{bin}> \mid <\text{bin}> * <\text{exp}> \\
 <\text{bin}> & ::= 0 \mid 1
 \end{align*}
 \]
- type exp = Factor2Exp of factor
 | Plus of factor * factor
- and factor = Bin2Factor of bin
 | Mult of bin * exp
- and bin = Zero | One

Example cont.

- $1 * 1 + 0$: \[
 \begin{align*}
 \text{<exp>} \quad & \quad \text{<factor>} \\
 \text{<bin>} \quad & \quad \text{<exp>} \\
 \text{<bin>} \quad & \quad \text{<bin>} \\
 \text{<bin>} \quad & \quad 1 \\
 \text{<bin>} \quad & \quad 0
 \end{align*}
 \]
- Can be represented as
 \[
 \text{Factor2Exp (Mult (One, Plus (Bin2Factor One, Bin2Factor Zero)))}
 \]

Ambiguous Grammars and Languages

- A BNF grammar is \textit{ambiguous} if its language contains strings for which there is more than one parse tree
- If all BNF’s for a language are ambiguous then the language is \textit{inherently ambiguous}
Example: Ambiguous Grammar

- $0 + 1 + 0$

```
<Sum>                 <Sum>
<Sum> + <Sum>  <Sum> + <Sum>  
<Sum> + <Sum>  0         0   <Sum> + <Sum>  
     0             1                            1             0
```

Example

- What is the result for: $3 + 4 * 5 + 6$

Possible answers:
- $41 = ((3 + 4) * 5) + 6$
- $47 = 3 + (4 * (5 + 6))$
- $29 = (3 + (4 * 5)) + 6 = 3 + ((4 * 5) + 6)$
- $77 = (3 + 4) * (5 + 6)$

Example

- What is the value of: $7 - 5 - 2$

Possible answers:
- In Pascal, C++, SML assoc. left
 $7 - 5 - 2 = (7 - 5) - 2 = 0$
- In APL, associate to right
 $7 - 5 - 2 = 7 - (5 - 2) = 4$

Two Major Sources of Ambiguity

- Lack of determination of operator precedence
- Lack of determination of operator associativity
- Not the only sources of ambiguity