Programming Languages and Compilers (CS 421)

Elsa L Gunter
 2112 SC, UIUC

https://courses.engr.illinois.edu/cs421/fa2017/CS421D

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Evaluating declarations

- Evaluation uses an environment ρ
- To evaluate a (simple) declaration let $\mathrm{x}=\mathrm{e}$
- Evaluate expression e in ρ to value v
- Update ρ with $\mathrm{x} \rightarrow \mathrm{v}:\{\mathrm{x} \rightarrow \mathrm{v}\}+\rho$

Evaluating declarations

- Evaluation uses an environment ρ
- To evaluate a (simple) declaration let $x=e$
- Evaluate expression e in ρ to value v
- Update ρ with $\mathrm{x} \mathrm{v}:\{\mathrm{x} \rightarrow \mathrm{v}\}+\rho$
- Update: $\rho_{1}+\rho_{2}$ has all the bindings in ρ_{1} and all those in ρ_{2} that are not rebound in ρ_{1}
$\left\{x \rightarrow 2, y \rightarrow 3, a \rightarrow{ }^{\prime \prime} h^{\prime \prime}\right\}+\{y \rightarrow 100, b \rightarrow 6\}$
$=\left\{x \rightarrow 2, y \rightarrow 3, a \rightarrow{ }^{\prime} h i ", b \rightarrow 6\right\}$

Evaluating expressions in OCaml

- Evaluation uses an environment ρ
- A constant evaluates to itself, including primitive operators like + and =

Evaluating expressions in OCaml

- Evaluation uses an environment ρ
- A constant evaluates to itself, including primitive operators like + and =
- To evaluate a variable, look it up in ρ : $\rho(\mathrm{v})$

Evaluating expressions in OCaml

- Evaluation uses an environment ρ
- A constant evaluates to itself, including primitive operators like + and =
- To evaluate a variable, look it up in ρ : $\rho(\mathrm{v})$
- To evaluate a tuple $\left(\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}\right)$,
- Evaluate each e_{i} to v_{i}, right to left for Ocaml
- Then make value ($\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}$)

Evaluating expressions in OCaml

- To evaluate uses of +, - , etc, eval args, then do operation

Evaluating expressions in OCaml

- To evaluate uses of +, - , etc, eval args, then do operation
- Function expression evaluates to its closure

Evaluating expressions in OCaml

- To evaluate uses of +, - , etc, eval args, then do operation
- Function expression evaluates to its closure
- To evaluate a local dec: let $x=e 1$ in e2
- Eval e1 to v, then eval e2 using $\{x \rightarrow v\}+\rho$

Evaluating expressions in OCaml

- To evaluate uses of +, - , etc, eval args (right to left for Ocaml), then do operation
- Function expression evaluates to its closure
- To evaluate a local dec: let $x=e 1$ in e2
- Eval e1 to v, then eval e2 using $\{x \rightarrow v\}+\rho$
- To evaluate a conditional expression: if b then e1 else e2
- Evaluate b to a value v
- If v is True, evaluate $e 1$
- If v is False, evaluate e2

Evaluation of Application with Closures

- Given application expression fe
- In Ocaml, evaluate e to value v
- In environment ρ, evaluate left term to closure, $c=\left\langle\left(x_{1}, \ldots, x_{n}\right) \rightarrow b, \rho^{\prime}\right\rangle$
- ($\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$) variables in (first) argument
- v must have form ($\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}$)
- Update the environment ρ^{\prime} to
$\rho^{\prime \prime}=\left\{\mathrm{X}_{1} \rightarrow \mathrm{v}_{1}, \ldots, \mathrm{X}_{\mathrm{n}} \rightarrow \mathrm{v}_{\mathrm{n}}\right\}+\rho^{\prime}$
- Evaluate body b in environment $\rho^{\prime \prime}$

Recursive Functions

\# let rec factorial $\mathrm{n}=$
if $\mathrm{n}=0$ then 1 else n * factorial ($\mathrm{n}-1$); ;
val factorial : int -> int = <fun>
\# factorial 5;;

- : int = 120
\# (* rec is needed for recursive function declarations *)

Recursion Example

Compute n^{2} recursively using:

$$
n^{2}=(2 * n-1)+(n-1)^{2}
$$

\# let rec nthsq $\mathrm{n}=$ (* rec for recursion *) match n
with $0->0$
(* pattern matching for cases *)
($n \rightarrow\left(\right.$ base case ${ }^{*}$)
$\mid \mathrm{n}->(2 * \mathrm{n}-1) \quad$ (* recursive case *) + nthsq ($\mathrm{n}-1$) ${ }^{\prime}, \quad$ ($*$ recursive call ${ }^{*}$)
val nthsq : int -> int = <fun>
\# nthsq 3;;
: int = 9
Structure of recursion similar to inductive proof

Recursion and Induction

\# let rec nthsq $\mathrm{n}=$ match n with $0->0$

$$
\mid n->(2 * n-1)+n t h s q(n-1) ; ;
$$

- Base case is the last case; it stops the computation
- Recursive call must be to arguments that are somehow smaller - must progress to base case
- if or match must contain base case
- Failure of these may cause failure of termination

Lists

- List can take one of two forms:
- Empty list, written []
- Non-empty list, written x :: xs
- x is head element, xs is tail list, :: called "cons"
- Syntactic sugar: [x] == x :: []
- [x1; x2; ...; xn] == x1 :: x2 :: ... :: xn :: []

Lists

\# let fib5 = [8;5;3;2;1;1];;
val fib5 : int list = [8; 5; 3; 2; 1; 1]
\# let fib6 = 13 :: fib5;;
val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]
\# (8::5::3::2::1::1::[]) = fib5;;

- : bool = true
\# fib5 @ fib6;;
- : int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1; 1]

Lists are Homogeneous

\＃let bad＿list＝［1；3．2；7］；；
Characters 19－22：
let bad＿list＝［1；3．2；7］；； ヘヘヘ

This expression has type float but is here used with type int

Question

- Which one of these lists is invalid?

1. $[2 ; 3 ; 4 ; 6]$
2. $[2,3 ; 4,5 ; 6,7]$
3. $[(2.3,4) ;(3.2,5) ;(6,7.2)]$
4. [["hi"; "there"]; ["wahcha"]; []; ["doin"]]

Answer

- Which one of these lists is invalid?

1. $[2 ; 3 ; 4 ; 6]$
2. $[2,3 ; 4,5 ; 6,7]$
3. $[(2.3,4) ;(3.2,5) ;(6,7.2)]$
4. [["hi"; "there"]; ["wahcha"]; []; ["doin"]]

- 3 is invalid because of last pair

Functions Over Lists

\# let rec double_up list = match list
with [] -> [] (* pattern before ->, expression after ${ }^{*}$) | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun> \# let fib5_2 = double_up fib5;;
val fib5_2 : int list = [8; 8; 5; 5; 3; 3; 2; 2; 1; $1 ; 1 ; 1]$

Functions Over Lists

\# let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]
\# let rec poor_rev list =
match list
with [] -> []
| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun> \# poor_rev silly;;

- : string list = ["there"; "there"; "hi"; "hi"]

Structural Recursion

- Functions on recursive datatypes (eg lists) tend to be recursive
- Recursion over recursive datatypes generally by structural recursion
- Recursive calls made to components of structure of the same recursive type
- Base cases of recursive types stop the recursion of the function

Question: Length of list

- Problem: write code for the length of the list
. How to start?
let rec length list =

Question: Length of list

- Problem: write code for the length of the list
- How to start?
let rec length list =
match list with

Question: Length of list

- Problem: write code for the length of the list
- What patterns should we match against?
let rec length list =
match list with

Question: Length of list

- Problem: write code for the length of the list
- What patterns should we match against?
let rec length list =
match list with [] ->
| (a :: bs) ->

Question: Length of list

- Problem: write code for the length of the list
- What result do we give when list is empty?
let rec length list =
match list with [] ->
| (a :: bs) ->

Question: Length of list

- Problem: write code for the length of the list
- What result do we give when list is empty?
let rec length list =
match list with [] -> 0
| (a :: bs) ->

Question: Length of list

- Problem: write code for the length of the list
- What result do we give when list is not empty?
let rec length list =
match list with [] -> 0
| (a :: bs) ->

Question: Length of list

- Problem: write code for the length of the list
- What result do we give when list is not empty?
let rec length list =
match list with [] -> 0
| (a :: bs) -> 1 + length bs

Structural Recursion : List Example

\# let rec length list = match list
with [] -> 0 (* Nil case *)
| a :: bs -> 1 + length bs;; (* Cons case *)
val length : 'a list -> int = <fun>
\# length [5; 4; 3; 2];;

- : int = 4
- Nil case [] is base case
- Cons case recurses on component list bs

Same Length

- How can we efficiently answer if two lists have the same length?

Same Length

- How can we efficiently answer if two lists have the same length?
let rec same_length list1 list2 = match list1 with [] ->
| (x::xs) ->

Same Length

- How can we efficiently answer if two lists have the same length?
let rec same_length list1 list2 =
match list1 with [] ->
(match list2 with [] -> true
| (y::ys) -> false)
| (x::xs) ->

Same Length

- How can we efficiently answer if two lists have the same length?
let rec same_length list1 list2 =
match list1 with [] ->
(match list2 with [] ->
| (y::ys) ->)
| (x::xs) ->

Same Length

- How can we efficiently answer if two lists have the same length?
let rec same_length list1 list2 =
match list1 with [] ->
(match list2 with [] -> true
| (y::ys) -> false)
(x::xs) ->
(match list2 with [] ->
| (y::ys) ->

Same Length

- How can we efficiently answer if two lists have the same length?
let rec same_length list1 list2 =
match list1 with [] ->
(match list2 with [] -> true
| (y::ys) -> false)
(x::xs) ->
(match list2 with [] -> false
| (y::ys) ->

Same Length

- How can we efficiently answer if two lists have the same length?
let rec same_length list1 list2 =
match list1 with [] ->
(match list2 with [] -> true
| (y::ys) -> false)
| (x::xs) ->
(match list2 with [] -> false
| (y::ys) -> same_length xs ys)

Your turn: doubleList : int list -> int list

- Write a function that takes a list of int and returns a list of the same length, where each element has been multiplied by 2
let rec doubleList list =

Your turn: doubleList : int list -> int list

- Write a function that takes a list of int and returns a list of the same length, where each element has been multiplied by 2
let rec doubleList list =
match list
with [] -> []
| x :: xs -> (2 * x) :: doubleList xs

Your turn: doubleList : int list -> int list

- Write a function that takes a list of int and returns a list of the same length, where each element has been multiplied by 2
let rec doubleList list =
match list
with [] ->[]
$\mid x:: x s->(2 * x):$ doubleList x

Folding Recursion

- Another common form "folds" an operation over the elements of the structure
\# let rec multList list = match list
with [] -> 1
| x::xs -> x * multList xs;;
val multList : int list -> int = <fun> \# multList [2;4;6];;
- : int = 48
- Computes (2 * (4 * (6 * 1)))

Folding Recursion : Length Example

\# let rec length list = match list
with [] -> 0 (* Nil case *)
| a :: bs -> 1 + length bs;;; (* Cons case *)
val length : 'a list -> int = <fun>
\# length [5; 4; 3; 2];;

- : int = 4
- Nil case [] is base case, 0 is the base value
- Cons case recurses on component list bs
- What do multList and length have in common?

Forward Recursion

- In Structural Recursion, split input into components and (eventually) recurse
- Forward Recursion form of Structural Recursion
- In forward recursion, first call the function recursively on all recursive components, and then build final result from partial results
- Wait until whole structure has been traversed to start building answer

Forward Recursion: Examples

\# let rec double_up list =
match list
with [] -> []
(x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>
\# let rec poor_rev list = match list with [] -> []
| (x::xs) -> let r = poor_rev xs in r @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

Forward Recursion: Examples

\# let rec double_up list =
match list with [] -> []

$$
\text { (x :: xs })^{\prime}->\text { (x : : x :: double_up xs); ; }
$$

val double/ up : 'a list $->+$ 'a list $=$ <fun>
Base Case Operator Recursive Call
\# let rec poor_rev list =
match list
with [] -> []
$\mid(x:: x s)$ - $>$ let r = poor rev xs in r @ [x]; ;
val poor_rev : 'a list -> 'a list = <fun > Base Case

Operator Recursive Call

Recursing over lists

\# let rec fold_right f list b = match list
with [] -> b
The Primitive
| (x :: xs) -> fx (fold_right fxs b);; Recursion Fairy
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>
\# fold_right
(fun s -> fun () -> print_string s) ["hi"; "there"]
();
therehi- : unit $=()$

Folding Recursion : Length Example

\# let rec length list = match list
with [] -> 0 (* Nil case *)
| a :: bs -> 1 + length bs;;; (* Cons case *)
val length : 'a list -> int = <fun>
\# let length list =
fold_right (fun a -> fun r-> $1+r$) list 0;;
val length : 'a list -> int = <fun>
\# length [5; 4; 3; 2];;

- : int = 4

Forward Recursion: Examples

\# let rec double_up list =
match list
with [] -> []

$$
\text { (x :: xs })^{\prime}->\text { (x :: x :: double_up xs); ; }
$$

val double/up : 'a list $->+$ 'a list $=$ <fun>
Base Case Operator Recursive Call
\# let double_up =
fold_right (fun $x->$ fun $r->x:: x:: \mid r)$ list []
Operator Recursive result Base Case
\# double_up ["a";"b"];;

- : string list = ["a"; "a"; "b"; "b"]
- let rec multList_fr list = match list
with [] -> 1
| (x::xs) -> let r = (multList_fr ns) in

$$
(x * r)
$$

Folding Recursion

- multList folds to the right
- Same as:
\# let multList list =
List.fold_right
(fun $x->$ fun $p->x * p$)
list 1;;
val multList : int list -> int = <fun> \# multList [2;4;6];;
- : int = 48

Terminology

- Available: A function call that can be executed by the current expression
- The fastest way to be unavailable is to be guarded by an abstraction (anonymous function, lambda lifted).
- if $(h x)$ then $f x$ else $(x+g x)$
- if $(h x)$ then (fun $x->f x$) else $(g(x+x)$)

Not available

Terminology

- Tail Position: A subexpression s of expressions e, which is available and such that if evaluated, will be taken as the value of e (last thing done in this expression)
- if $(x>3)$ then $x+2$ else $x-4$
- let $x=5$ in $x+4$
- Tail Call: A function call that occurs in tail position
- if $(h x)$ then $f x$ else $(x \pm g x)$

Tail Recursion

- A recursive program is tail recursive if all recursive calls are tail calls
- Tail recursive programs may be optimized to be implemented as loops, thus removing the function call overhead for the recursive calls
- Tail recursion generally requires extra "accumulator" arguments to pass partial results
- May require an auxiliary function

Tail Recursion - length

- How can we write length with tail recursion? let length list =
let rec length_aux list acc_length = match list
with [] -> acc_length
| (x::xs) ->
length_aux xs (1 + acc_length)
in length_aux list 0

Your turn: num_neg - tail recursive

\# let num_neg list =

Your turn: num_neg - tail recursive

\# let num_neg list =
let rec num_neg_aux list curr_neg =
in num_neg_aux ? ?

Your turn: num_neg - tail recursive

\# let num_neg list =
let rec num_neg_aux list curr_neg = match list with [] ->
| (x :: xs) ->
in num_neg_aux ? ?

Your turn: num_neg - tail recursive

\# let num_neg list =
let rec num_neg_aux list curr_neg = match list with [] -> curr_neg
| (x :: xs) ->
in num_neg_aux ? ?

Your turn: num_neg - tail recursive

\# let num_neg list =
let rec num_neg_aux list curr_neg = match list with [] -> curr_neg
| (x :: xs) ->
num_neg_aux xs ?
in num_neg_aux ? ?

Your turn: num_neg - tail recursive

\# let num_neg list =
let rec num_neg_aux list curr_neg = match list with [] -> curr_neg
| (x :: xs) ->
num_neg_aux xs

$$
\begin{aligned}
& \text { (if } x<0 \text { then } 1+\text { curr_neg } \\
& \text { else curr_neg) }
\end{aligned}
$$

in num_neg_aux ? ?

Your turn: num_neg - tail recursive

\# let num_neg list =
let rec num_neg_aux list curr_neg = match list with [] -> curr_neg
| (x :: xs) ->
num_neg_aux xs
(if $x<0$ then $1+$ curr_neg else curr_neg)
in num_neg_aux list ?

Your turn: num_neg - tail recursive

\# let num_neg list =
let rec num_neg_aux list curr_neg = match list with [] -> curr_neg
| (x :: xs) ->
num_neg_aux xs
(if $x<0$ then $1+$ curr_neg else curr_neg)
in num_neg_aux list 0
let num_neg list =
List.fold_left
(fun curr_neg -> (fun x -> (if $x<0$ then $1+$ curr_neg else curr_neg))
0
list

Folding

\# let rec fold_left f a list = match list
with [] -> a | (x :: xs) -> fold_left f (f a x) xs;; val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>
fold_left f a $\left[x_{1} ; x_{2} ; \ldots ; x_{n}\right]=f\left(\ldots\left(f\left(f\right.\right.\right.$ a $\left.\left.\left.x_{1}\right) x_{2}\right) \ldots\right) x_{n}$
\# let rec fold_right f list $b=$ match list
with [] -> b | (x :: xs) -> f x (fold_right f xs b) ;;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>
fold_right $f\left[x_{1} ; x_{2} ; \ldots ; x_{n}\right] b=f x_{1}\left(f x_{2}\left(\ldots\left(f x_{n} b\right) \ldots\right)\right)$

Folding

- Can replace recursion by fold_right in any forward primitive recursive definition
- Primitive recursive means it only recurses on immediate subcomponents of recursive data structure
- Can replace recursion by fold_left in any tail primitive recursive definition

Mapping Recursion

\# let rec map f list =

match list

with [] -> []
| (h::t) -> (f h) :: (map ft);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun> \# map plus_two fib5;;

- : int list = [10; 7; 5; 4; 3; 3]
\# map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]

Map is forward recursive

\# let rec map f list = match list

val map: ('a-> 'b) -> 'a list -> 'b list = <fun> \# let map f list = List.fold_right (fun h -> fun r-> (f h) :: r) list [];;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

Mapping Recursion

- Can use the higher-order recursive map function instead of direct recursion
\# let doubleList list =
List.map (fun x -> 2 * x) list;;
val doubleList : int list $->$ int list $=<$ fun> \# doubleList [2;3;4];;
- : int list = [4; 6; 8]

Mapping Recursion

- Can use the higher-order recursive map function instead of direct recursion
\# let doubleList list =
List.map (fun x -> 2 * x) list;;
val doubleList : int list $->$ int list $=<$ fun> \# doubleList [2;3;4];;
- : int list = [4; 6; 8]
- Same function, but no explicit recursion

