Programming Languages and Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha
Consider this code:

```ocaml
let x = 27;;
let f x =
    let x = 5 in
    (fun x -> print_int x) 10;;
f 12;;
```

What value is printed?

5
10
12
27
Recall: let plus_x = fun x => y + x

let x = 12

let plus_x = fun y => y + x

let x = 7
Closure for plus_x

- When plus_x was defined, had environment:
 \[\rho_{\text{plus}_x} = \{\ldots, x \rightarrow 12, \ldots\} \]

- Recall: let plus_x y = y + x
 is really let plus_x = fun y -> y + x

- Closure for fun y -> y + x:
 \[<y \rightarrow y + x, \rho_{\text{plus}_x} > \]

- Environment just after plus_x defined:
 \[\{\text{plus}_x \rightarrow <y \rightarrow y + x, \rho_{\text{plus}_x} >\} + \rho_{\text{plus}_x} \]
Functions on tuples

```ocaml
# let plus_pair (n,m) = n + m;;
val plus_pair : int * int -> int = <fun>
# plus_pair (3,4);;
- : int = 7
# let double x = (x,x);;
val double : 'a -> 'a * 'a = <fun>
# double 3;;
- : int * int = (3, 3)
# double "hi";;
- : string * string = ("hi", "hi")
```
Your turn now

Try Problem 1 on ML1
A closure is a pair of an environment and an association of a sequence of variables (the input variables) with an expression (the function body), written:

\[\langle (v_1, \ldots, v_n) \rightarrow \text{exp}, \rho \rangle \]

Where \(\rho \) is the environment in effect when the function is defined (for a simple function)
Assume $\rho_{\text{plus_pair}}$ was the environment just before \texttt{plus_pair} defined

Closure for \texttt{fun (n,m) -> n + m}:

$\langle (n,m) \rightarrow n + m, \rho_{\text{plus_pair}} \rangle$

Environment just after \texttt{plus_pair} defined:

$\{ \text{plus_pair} \rightarrow \langle (n,m) \rightarrow n + m, \rho_{\text{plus_pair}} \rangle \} + \rho_{\text{plus_pair}}$
Your turn now

Try (* 1 *) from HW2
Functions with more than one argument

```ocaml
# let add_three x y z = x + y + z;;
val add_three : int -> int -> int -> int = <fun>
# let t = add_three 6 3 2;;
val t : int = 11
# let add_three =
   fun x -> (fun y -> (fun z -> x + y + z));;
val add_three : int -> int -> int -> int = <fun>
```

Again, first syntactic sugar for second
Your turn now

Try Problem 3 on ML1
Curried vs Uncurried

- Recall
 val add_three : int -> int -> int -> int = <fun>
 How does it differ from
 # let add_triple (u,v,w) = u + v + w;;
 val add_triple : int * int * int -> int = <fun>

- add_three is **curried**;
- add_triple is **uncurried**
Curried vs Uncurried

add_triple (6,3,2);;
- : int = 11
add_triple 5 4;;

Characters 0-10:
 add_triple 5 4;;
 ^^^^^^^^^^^^^

This function is applied to too many arguments, maybe you forgot a `;'
fun x -> add_triple (5,4,x);;
: int -> int = <fun>
Partial application of functions

```ocaml
let add_three x y z = x + y + z;;

# let h = add_three 5 4;;
val h : int -> int = <fun>
# h 3;;
- : int = 12
# h 7;;
- : int = 16
```
Your turn now

Try (* 2 *) from HW2

Caution!

Know what the argument is and what the body is
Functions as arguments

```ocaml
# let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
# let g = thrice plus_two;;
val g : int -> int = <fun>
# g 4;;
- : int = 10
# thrice (fun s -> "Hi! " ^ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"
```
Your turn now

Try Problem 4 on ML1
Evaluating declarations

- Evaluation uses an environment ρ
- To evaluate a (simple) declaration $\text{let } x = e$
 - Evaluate expression e in ρ to value v
 - Update ρ with x v: $\{x \rightarrow v\} + \rho$

Update: $\rho_1 + \rho_2$ has all the bindings in ρ_1 and all those in ρ_2 that are not rebound in ρ_1

$\{x \rightarrow 2, y \rightarrow 3, a \rightarrow \text{"hi"}\} + \{y \rightarrow 100, b \rightarrow 6\}$

$= \{x \rightarrow 2, y \rightarrow 3, a \rightarrow \text{"hi"}, b \rightarrow 6\}$
Evaluating expressions

- Evaluation uses an environment ρ
- A constant evaluates to itself
- To evaluate an variable, look it up in $\rho (\rho(v))$
- To evaluate uses of +, _, etc, eval args, then do operation
- Function expression evaluates to its closure
- To evaluate a local dec: \texttt{let x = e1 in e2}
 - Eval $e1$ to v, eval $e2$ using $\{x \rightarrow v\} + \rho$
Evaluation of Application with Closures

- In environment ρ, evaluate left term to closure, $c = \langle(x_1,\ldots,x_n) \rightarrow b, \rho\rangle$
- (x_1,\ldots,x_n) variables in (first) argument
- Evaluate the right term to values, (v_1,\ldots,v_n)
- Update the environment ρ to $\rho' = \{x_1 \rightarrow v_1,\ldots, x_n \rightarrow v_n\} + \rho$
- Evaluate body b in environment ρ'
Evaluation of Application of plus_x;;

- Have environment:
 \[\rho = \{\text{plus}_x \rightarrow \langle y \rightarrow y + x, \rho_{\text{plus}_x} >, \ldots, y \rightarrow 3, \ldots \}\]
 where \(\rho_{\text{plus}_x} = \{x \rightarrow 12, \ldots\} \)

- \(\text{Eval} (\text{plus}_x y, \rho) \) rewrites to

- \(\text{App} (\langle y \rightarrow y + x, \rho_{\text{plus}_x} >, 3) \) rewrites to

- \(\text{Eval} (y + x, \{y \rightarrow 3\} + \rho_{\text{plus}_x}) \) rewrites to

- \(\text{Eval} (3 + 12, \rho_{\text{plus}_x}) = 15 \)
Evaluation of Application of plus_pair

- Assume environment

\[\rho = \{ x \rightarrow 3, \ldots, \plus_pair \rightarrow \langle (n,m) \rightarrow n + m, \rho_{\plus_pair} \rangle \} + \rho_{\plus_pair} \]

- Eval (plus_pair (4,x), \rho) =

- App (\langle (n,m) \rightarrow n + m, \rho_{\plus_pair} \rangle, (4,3)) =

- Eval (n + m, \{ n -> 4, m -> 3 \} + \rho_{\plus_pair}) =

- Eval (4 + 3, \{ n -> 4, m -> 3 \} + \rho_{\plus_pair}) = 7
Your turn now

Try (* 3 *) from HW2
Closure question

- If we start in an empty environment, and we execute:

```ml
let f = fun n -> n + 5;;
(* 0 *)
let pair_map g (n,m) = (g n, g m);;
let f = pair_map f;;
let a = f (4,6);;
```

What is the environment at (* 0 *)?
Answer

let f = fun n -> n + 5;;

\[\rho_0 = \{ f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \} \]
Closure question

- If we start in an empty environment, and we execute:
  ```ml
  let f = fun => n + 5;;
  let pair_map g (n,m) = (g n, g m);;
  (* 1 *)
  let f = pair_map f;;
  let a = f (4,6);;
  ```

What is the environment at (* 1 *)?
Answer

\[\rho_0 = \{f \rightarrow <n \rightarrow n + 5, \{\}\}\} \]

let pair_map g (n,m) = (g n, g m);;

\[\rho_1 = \{\text{pair_map} \rightarrow \]

\[\{g \rightarrow \text{fun } (n,m) \rightarrow (g n, g m), \]

\[\{f \rightarrow <n \rightarrow n + 5, \{\}\}\}\} >, \]

\[f \rightarrow <n \rightarrow n + 5, \{\}\}\} \]
Closure question

- If we start in an empty environment, and we execute:

 let f = fun => n + 5;;
 let pair_map g (n,m) = (g n, g m);;
 let f = pair_map f;;

 (* 2 *)
 let a = f (4,6);;

What is the environment at (* 2 *)?
Evaluate `pair_map f`

\[\rho_0 = \{ f \rightarrow <n \rightarrow n + 5, \{ \} > \} \]
\[\rho_1 = \{ \text{pair_map} \rightarrow <g \rightarrow \text{fun} (n, m) \rightarrow (g n, g m), \rho_0 >, \]
\[f \rightarrow <n \rightarrow n + 5, \{ \} > \} \]

let f = pair_map f;;
Evaluate \texttt{pair_map} f

\[\rho_0 = \{ f \rightarrow <n \rightarrow n + 5, \{ \} > \} \]
\[\rho_1 = \{ \text{pair_map} \rightarrow <g \rightarrow \text{fun} (n,m) \rightarrow (g n, g m), \rho_0 >, f \rightarrow <n \rightarrow n + 5, \{ \} > \} \]

\[\text{Eval(pair_map} f, \rho_1) = \]
Evaluate \texttt{pair_map\ f}

\[
\rho_0 = \{ f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \}
\]

\[
\rho_1 = \{ \text{pair_map} \rightarrow \langle g \rightarrow \text{fun} (n,m) \rightarrow (g\ n, g\ m), \rho_0 \rangle, \quad f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \}
\]

\[
\text{Eval}(\text{pair_map}\ f, \rho_1) = \\
\text{Eval}(\text{app} (\langle g \rightarrow \text{fun} (n,m) \rightarrow (g\ n, g\ m), \rho_0 \rangle, \\
\quad \langle n \rightarrow n + 5, \{ \} \rangle), \rho_1) =
\]
Evaluate \(\text{pair_map f} \)

\[
\rho_0 = \{ f \rightarrow <n \rightarrow n + 5, \{ \} > \}
\]

\[
\rho_1 = \{ \text{pair_map} \rightarrow <g \rightarrow \text{fun} (n,m) \rightarrow (g n, g m), \rho_0 >,
\]

\[
f \rightarrow <n \rightarrow n + 5, \{ \} > \}
\]

\[
\text{Eval}(\text{pair_map f}, \rho_1) =
\]

\[
\text{Eval}(\text{app} (\langle g \rightarrow \text{fun} (n,m) \rightarrow (g n, g m), \rho_0 >,
\]

\[
\langle n \rightarrow n + 5, \{ \} >), \rho_1) =
\]

\[
\text{Eval}(\text{fun} (n,m) \rightarrow (g n, g m), \{ g \rightarrow <n \rightarrow n + 5, \{ \} > \} + \rho_0)
\]

\[
= \langle (n,m) \rightarrow (g n, g m), \{ g \rightarrow <n \rightarrow n + 5, \{ \} > \} + \rho_0 \rangle
\]

\[
= \langle (n,m) \rightarrow (g n, g m), \{ g \rightarrow <n \rightarrow n + 5, \{ \} > \}
\]

\[
f \rightarrow <n \rightarrow n + 5, \{ \} > \}
\]
\[\rho_1 = \{ \text{pair_map} \rightarrow \]
\[<g \rightarrow \text{fun} (n,m) \rightarrow (g \ n, \ g \ m), \{ f \rightarrow <n \rightarrow \ n + 5, \{ \} > > > >, \]
\[f \rightarrow <n \rightarrow \ n + 5, \{ \} > > > > \]
\[\}\text{let f = pair_map f;;} \]
\[\rho_2 = \{ f \rightarrow <(n,m) \rightarrow (g \ n, \ g \ m), \]
\[\{ g \rightarrow <n \rightarrow \ n + 5, \{ \} > > > >, \]
\[f \rightarrow <n \rightarrow \ n + 5, \{ \} > > > > \} > > > >, \]
\[\text{pair_map} \rightarrow <g \rightarrow \text{fun} (n,m) \rightarrow (g \ n, \ g \ m), \]
\[\{ f \rightarrow <n \rightarrow \ n + 5, \{ \} > > > > \} > > > > \} \]
Closure question

If we start in an empty environment, and we execute:

```ml
let f = fun => n + 5;;
let pair_map g (n,m) = (g n, g m);;
let f = pair_map f;;
let a = f (4,6);;
(* 3 *)
```

What is the environment at (* 3 *)?
Final Evaluation?

\[\rho_2 = \{ f \mapsto <(n,m) \mapsto (g n, g m), \}
\{ g \mapsto <n \mapsto n + 5, \{ \}>, \}
\text{pair_map} \mapsto <g \mapsto \text{fun (n,m) -> } (g n, g m), \}
\text{let a = f (4,6);;
Evaluate $f(4,6)$;

$$\rho_2 = \{ f \rightarrow (n,m) \rightarrow (g\ n,\ g\ m),$$

$$\{ g \rightarrow n \rightarrow n + 5, \{ \} \},$$

$$f \rightarrow n \rightarrow n + 5, \{ \} \},$$

$$\text{pair_map} \rightarrow <g \rightarrow \text{fun} (n,m) \rightarrow (g\ n,\ g\ m),$$

$$\{ f \rightarrow n \rightarrow n + 5, \{ \} \} > > > \}$$

Eval$(f(4,6), \rho_2) =$
Evaluate $f\ (4,6)$;

$\rho_2 = \{ f \rightarrow \langle n,m \rangle \rightarrow (g\ n,\ g\ m), \quad \{ g \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle, \quad \{ f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \} \} \}$

pair_map $\rightarrow \langle g \rightarrow \text{fun}\ (n,m) \rightarrow (g\ n,\ g\ m), \quad \{ f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \} \rangle \}$

Eval($f\ (4,6),\ \rho_2$) = Eval(app($\langle (n,m) \rightarrow (g\ n,\ g\ m)$),

$\{ g \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle, \quad \{ f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \} \rangle, (4,6)),\ \rho_2$) =
Evaluate \(f(4,6) \);

\[
\text{Eval}(\text{app}(\langle n,m \rangle \to (g\ n,\ g\ m),\ \\
\{g \to \langle n \to n + 5, \{ \}\rangle, \ \\
f \to \langle n \to n + 5, \{ \}\rangle\rangle,(4,6)), \ \rho_2) = \\
\text{Eval}((g\ n,\ g\ m), \{n \to 4,\ m \to 6\} + \\
\{g \to \langle n \to n + 5, \{ \}\rangle, \ \\
f \to \langle n \to n + 5, \{ \}\rangle\rangle) = \\
\text{Eval}((\text{app}(\langle n \to n + 5, \{ \}\rangle,\ 4), \\
\text{app}(\langle n \to n + 5, \{ \}\rangle,\ 6)), \\
\{n \to 4,\ m \to 6,\ g \to \langle n \to n + 5, \{ \}\rangle, \ \\
f \to \langle n \to n + 5, \{ \}\rangle\rangle) =
\]

8/31/15
Evaluate \(f(4, 6) ;; \)

\[
\rho_3 = \{ \begin{array}{c}
n \rightarrow 4, \\
m \rightarrow 6, \\
g \rightarrow <n \rightarrow n + 5, \{ \rangle, \\
f \rightarrow <n \rightarrow n + 5, \{ \rangle > \}
\end{array} \}
\]

\[
\text{Eval}((\text{app}(<n \rightarrow n + 5, \{ \rangle >, 4), \\
\text{app}(<n \rightarrow n + 5, \{ \rangle >, 6)), \rho_3) = \\
\text{Eval}((\text{Eval}(n + 5, \{n \rightarrow 4\} + \{ \})), \\
(\text{Eval}(n + 5, \{n \rightarrow 6\} + \{ \})), \rho_3) = \\
\text{Eval}((\text{Eval}(4 + 5, \{n \rightarrow 4\} + \{ \})), \\
(\text{Eval}(6 + 5, \{n \rightarrow 6\} + \{ \})), \rho_3) = \\
\text{Eval}((9, 11), \rho_3) = (9. 11)
\]

Your turn now

Try (* 4 *) from HW2
let triple_to_pair triple =

match triple
with (0, x, y) -> (x, y) | (x, 0, y) -> (x, y) | (x, y, _) -> (x, y);;

val triple_to_pair : int * int * int -> int * int = <fun>

• Each clause: pattern on left, expression on right
• Each x, y has scope of only its clause
• Use first matching clause
Recursive Functions

let rec factorial n =
 if n = 0 then 1 else n * factorial (n - 1);;
val factorial : int -> int = <fun>
factorial 5;;
- : int = 120
(* rec is needed for recursive function declarations *)
Your turn now

Try Problem 5 on ML1
Recursion Example

Compute \(n^2 \) recursively using:
\[
n^2 = (2 \times n - 1) + (n - 1)^2
\]

```ocaml
# let rec nthsq n =         (* rec for recursion *)
    match n              (* pattern matching for cases *)
    with 0 -> 0                  (* base case *)
    | n -> (2 * n -1)           (* recursive case *)
        + nthsq (n -1);;   (* recursive call *)

val nthsq : int -> int = <fun>
# nthsq 3;;
- : int = 9
```

Structure of recursion similar to inductive proof
Recursion and Induction

```ocaml
# let rec nthsq n = match n with
    | 0 -> 0
    | n -> (2 * n - 1) + nthsq (n - 1) ;;
```

- Base case is the last case; it stops the computation.
- Recursive call must be to arguments that are somehow smaller - must progress to base case.
- `if` or `match` must contain base case.
- Failure of these may cause failure of termination.
Lists

- First example of a recursive datatype (aka algebraic datatype)

- Unlike tuples, lists are homogeneous in type (all elements same type)
Lists

- List can take one of two forms:
 - Empty list, written \([\]\)
 - Non-empty list, written \(x :: xs\)
 - \(x\) is head element, \(xs\) is tail list, \(::\) called “cons”
 - Syntactic sugar: \([x] == x :: [\]\)
 - \([x1; x2; \ldots; xn] == x1 :: x2 :: \ldots :: xn :: [\]\)
Lists

let fib5 = [8;5;3;2;1;1];;
val fib5 : int list = [8; 5; 3; 2; 1; 1]

let fib6 = 13 :: fib5;;
val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]

(8::5::3::2::1::1::[]) = fib5;;
- : bool = true

fib5 @ fib6;;
- : int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1; 1]
Lists are Homogeneous

```ocaml
# let bad_list = [1; 3.2; 7];;
```

Characters 19-22:

```
let bad_list = [1; 3.2; 7];;;
```

```ocaml
  ^^^
```

This expression has type float but is here used with type int
Which one of these lists is invalid?

1. [2; 3; 4; 6]
2. [2,3; 4,5; 6,7]
3. [(2.3,4); (3.2,5); (6,7.2)]
4. [[“hi”; “there”]; [“wahcha”]; []; [“doin”]]
Which one of these lists is invalid?

1. [2; 3; 4; 6]
2. [2,3; 4,5; 6,7]
3. [(2.3,4); (3.2,5); (6,7.2)]
4. [[“hi”; “there”]; [“wahcha”]; []; [“doin”]]

3 is invalid because of last pair
Functions Over Lists

```ocaml
# let rec double_up list =
  match list with [] -> []  (* pattern before ->, expression after *)
  | (x :: xs) -> (x :: x :: double_up xs);
val double_up : 'a list -> 'a list = <fun>

# let fib5_2 = double_up fib5;;
val fib5_2 : int list = [8; 8; 5; 5; 3; 3; 2; 2; 1; 1; 1]
```
Functions Over Lists

```ocaml
# let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]
# let rec poor_rev list =
  match list
  with [] -> []
  | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
# poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]
```
Question: Length of list

- Problem: write code for the length of the list
 - How to start?

```plaintext
let length l =
```
Question: Length of list

- Problem: write code for the length of the list
 - How to start?

```ml
let rec length l =
  match l with
```
Question: Length of list

- Problem: write code for the length of the list
 - What patterns should we match against?

```ml
let rec length l =
  match l with
```
Question: Length of list

- Problem: write code for the length of the list
 - What patterns should we match against?

```ml
let rec length l =
  match l with [] ->
  | (a :: bs) ->
```
Question: Length of list

- Problem: write code for the length of the list
 - What result do we give when \(l \) is empty?

```ocaml
let rec length l =
  match l with [] -> 0
  | (a :: bs) ->
```

8/31/15
Question: Length of list

- Problem: write code for the length of the list
 - What result do we give when \(l \) is not empty?

```ocaml
let rec length l =
  match l with [] -> 0
  | (a :: bs) ->
```

8/31/15
Question: Length of list

Problem: write code for the length of the list

What result do we give when \(l \) is not empty?

```ocaml
let rec length l =
  match l with [] -> 0
  | (a :: bs) -> 1 + length bs
```
How can we efficiently answer if two lists have the same length?
How can we efficiently answer if two lists have the same length?

```ocaml
let rec same_length list1 list2 =
    match list1 with [] ->
        (match list2 with [] -> true
         | (y::ys) -> false)
    | (x::xs) ->
        (match list2 with [] -> false
         | (y::ys) -> same_length xs ys)
```
A function is *higher-order* if it takes a function as an argument or returns one as a result.

Example:

```ocaml
# let compose f g = fun x -> f (g x);;
val compose : ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b = <fun>
```

The type `('a -> 'b) -> ('c -> 'a) -> 'c -> 'b` is a higher order type because of `('a -> 'b)` and `('c -> 'a)` and `-> 'c -> 'b`
Recall:

```ocaml
# let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
```

How do you write thrice with compose?
Thrice

Recall:

```ml
# let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
```

How do you write `thrice` with `compose`?

```ml
# let thrice f = compose f (compose f f);;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
```

Is this the only way?
Partial Application

(+);;
- : int -> int -> int = <fun>
(+) 2 3;;
- : int = 5
let plus_two = (+) 2;;
val plus_two : int -> int = <fun>
plus_two 7;;
- : int = 9

- Partial application also called *sectioning*
You must remember the rules for evaluation when you use partial application.

```ocaml
# let add_two = (+) (print_string "test\n"; 2);;
val add_two : int -> int = <fun>
```

```ocaml
# let add2 = (* lambda lifted *)
    fun x -> (+) (print_string "test\n"; 2) x;;
val add2 : int -> int = <fun>
```
Lambda Lifting

thrice add_two 5;;
- : int = 11
thrice add2 5;;
test
test
test
test
- : int = 11

- Lambda lifting delayed the evaluation of the argument to (+) until the second argument was supplied
Partial Application and “Unknown Types”

- Recall `compose plus_two`:
  ```ocaml
  # let f1 = compose plus_two;;
  val f1 : ('_a -> int) -> '_a -> int = <fun>
  ```

- Compare to lambda lifted version:
  ```ocaml
  # let f2 = fun g -> compose plus_two g;;
  val f2 : ('a -> int) -> 'a -> int = <fun>
  ```

- What is the difference?
Partial Application and “Unknown Types”

- ‘_a can only be instantiated once for an expression

```
# f1 plus_two;;
- : int -> int = <fun>
# f1 List.length;;
Characters 3-14:
  f1 List.length;;
    ^^^^^^^^^^^^^^^^  
```

This expression has type 'a list -> int but is here used with type int -> int
Partial Application and “Unknown Types”

- ‘a can be repeatedly instantiated

```ocaml
# f2 plus_two;;
- : int -> int = <fun>

# f2 List.length;;
- : '_a list -> int = <fun>
```
Functions Over Lists

```ocaml
# let rec map f list =
  match list
  with [] -> []
  | (h::t) -> (f h) :: (map f t);

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

# map plus_two fib5;;
- : int list = [10; 7; 5; 4; 3; 3]
# map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]
```
Iterating over lists

```ocaml
# let rec fold_left f a list =  
  match list with [] -> a 
    | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>

# fold_left 
  (fun () -> print_string) 
  () 
  ["hi"; "there"];;
hithere- : unit = ()
```
Iterating over lists

```ocaml
# let rec fold_right f list b =
  match list
  with [] -> b
  | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

# fold_right
  (fun s -> fun () -> print_string s)
  ["hi"; "there"]
  ();;
therehi- : unit = ()
```
Structural Recursion

- Functions on recursive datatypes (e.g., lists) tend to be recursive.
- Recursion over recursive datatypes generally by structural recursion:
 - Recursive calls made to components of structure of the same recursive type.
 - Base cases of recursive types stop the recursion of the function.
Structural Recursion: List Example

```ocaml
# let rec length list = match list with
    | [] -> 0 (* Nil case *)
    | x :: xs -> 1 + length xs;; (* Cons case *)

val length : 'a list -> int = <fun>
```

- `Nil case []` is base case
- `Cons case` recurses on component list `xs`

```ocaml
# length [5; 4; 3; 2];;
- : int = 4
```
Forward Recursion

- In Structural Recursion, split input into components and (eventually) recurse
- Forward Recursion form of Structural Recursion
- In forward recursion, first call the function recursively on all recursive components, and then build final result from partial results
- Wait until whole structure has been traversed to start building answer
Forward Recursion: Examples

let rec double_up list =
 match list
 with [] -> []
 | (x :: xs) -> (x :: x :: double_up xs);
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
 match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
Encoding Recursion with Fold

```ocaml
# let rec append list1 list2 = match list1 with
  [ ] -> list2 | x::xs -> x :: append xs list2
val append : 'a list -> 'a list -> 'a list = <fun>

Base Case    Operation    Recursive Call

# let append list1 list2 =
  fold_right (fun x y -> x :: y) list1 list2
val append : 'a list -> 'a list -> 'a list = <fun>
# append [1;2;3] [4;5;6];;
- : int list = [1; 2; 3; 4; 5; 6]
```
One common form of structural recursion applies a function to each element in the structure

```ml
# let rec doubleList list = match list
    with [ ] -> [ ]
    | x::xs -> 2 * x :: doubleList xs;;
val doubleList : int list -> int list = <fun>
# doubleList [2;3;4];;
- : int list = [4; 6; 8]
```
Can use the higher-order recursive map function instead of direct recursion

```ocaml
# let doubleList list = List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
# doubleList [2;3;4];;
- : int list = [4; 6; 8]
```

- Same function, but no rec
Folding Recursion

- Another common form “folds” an operation over the elements of the structure

```ocaml
# let rec multList list = match list
with [ ] -> 1
| x::xs -> x * multList xs;;
val multList : int list -> int = <fun>
# multList [2;4;6];;
- : int = 48
```

- Computes \((2 \times (4 \times (6 \times 1)))\)
Folding Recursion

- multList folds to the right
- Same as:

```ocaml
# let multList list =
    List.fold_right
        (fun x -> fun p -> x * p)
    list 1;;
val multList : int list -> int = <fun>
# multList [2;4;6];;
- : int = 48
```
How long will it take?

- Remember the big-O notation from CS 225 and CS 273
- Question: given input of size n, how long to generate output?
- Express output time in terms of input size, omit constants and take biggest power
How long will it take?

Common big-O times:
- Constant time $O(1)$
 - input size doesn’t matter
- Linear time $O(n)$
 - double input \Rightarrow double time
- Quadratic time $O(n^2)$
 - double input \Rightarrow quadruple time
- Exponential time $O(2^n)$
 - increment input \Rightarrow double time
Linear Time

- Expect most list operations to take linear time $O(n)$
- Each step of the recursion can be done in constant time
- Each step makes only one recursive call
- List example: `multList`, `append`
- Integer example: `factorial`
Quadratic Time

- Each step of the recursion takes time proportional to input.
- Each step of the recursion makes only one recursive call.
- List example:

```ocaml
# let rec poor_rev list = match list
with [] -> []
    | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
```
Exponential running time

- Hideous running times on input of any size
- Each step of recursion takes constant time
- Each recursion makes two recursive calls
- Easy to write naïve code that is exponential for functions that can be linear
Exponential running time

let rec naiveFib n = match n
 with 0 -> 0
 | 1 -> 1
 | _ -> naiveFib (n-1) + naiveFib (n-2);;
val naiveFib : int -> int = <fun>
An Important Optimization

- When a function call is made, the return address needs to be saved to the stack so we know to where to return when the call is finished.
- What if f calls g and g calls h, but calling h is the last thing g does (a tail call)?
An Important Optimization

- When a function call is made, the return address needs to be saved to the stack so we know to where to return when the call is finished.
- What if \(f \) calls \(g \) and \(g \) calls \(h \), but calling \(h \) is the last thing \(g \) does (a tail call)?
- Then \(h \) can return directly to \(f \) instead of \(g \).
Tail Recursion

- A recursive program is tail recursive if all recursive calls are tail calls.
- Tail recursive programs may be optimized to be implemented as loops, thus removing the function call overhead for the recursive calls.
- Tail recursion generally requires extra "accumulator" arguments to pass partial results.
 - May require an auxiliary function.
Tail Recursion - Example

```ocaml
# let rec rev_aux list revlist = 
  match list with [ ] -> revlist 
  | x :: xs -> rev_aux xs (x::revlist);
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

# let rev list = rev_aux list [ ];
val rev : 'a list -> 'a list = <fun>
```

- What is its running time?
Comparison

- poor_rev [1,2,3] =
- (poor_rev [2,3]) @ [1] =
- (((poor_rev [3]) @ [2]) @ [1] =
- ((((poor_rev [])) @ [3]) @ [2]) @ [1] =
- ((([] @ [3]) @ [2]) @ [1]) =
- ([3] @ [2]) @ [1] =
- (3:: ([] @ [2])) @ [1] =
- [3,2] @ [1] =
- 3 :: ([2] @ [1]) =
- 3 :: (2:: ([] @ [1])) = [3, 2, 1]
Comparison

- \text{rev} [1,2,3] = \\
- \text{rev_aux} [1,2,3] [] = \\
- \text{rev_aux} [2,3] [1] = \\
- \text{rev_aux} [3] [2,1] = \\
- \text{rev_aux} [] [3,2,1] = [3,2,1]
How are the following functions similar?

```ocaml
# let rec sumlist list = match list with
  [ ] -> 0 | x::xs -> x + sumlist xs;;
val sumlist : int list -> int = <fun>
# sumlist [2;3;4];;
- : int = 9

# let rec prodlist list = match list with
  [ ] -> 1 | x::xs -> x * prodlist xs;;
val prodlist : int list -> int = <fun>
# prodlist [2;3;4];;
- : int = 24
```
Folding

let rec fold_left f a list = match list with [] -> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>
fold_left f a [x₁; x₂;...;xₙ] = f(...(f (f a x₁) x₂)...xₙ)

let rec fold_right f list b = match list with [] -> b | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>
fold_right f [x₁; x₂;...;xₙ] b = f x₁(f x₂ (...(f xₙ b)...))
Folding - Forward Recursion

```ml
# let sumlist list = fold_right (+) list 0;;
val sumlist : int list -> int = <fun>
# sumlist [2;3;4];;
- : int = 9
# let prodlist list = fold_right ( * ) list 1;;
val prodlist : int list -> int = <fun>
# prodlist [2;3;4];;
- : int = 24
```
Folding - Tail Recursion

```ml
# let rev list =

fold_left (fun l -> fun x -> x :: l) [] list
```

//comb op

//accumulator cell

Folding

- Can replace recursion by fold_right in any forward primitive recursive definition
 - Primitive recursive means it only recurses on immediate subcomponents of recursive data structure
- Can replace recursion by fold_left in any tail primitive recursive definition