Warm-up Scoping Question

Consider this code:

```plaintext
let x = 27;;
let f x =
    let x = 5 in
    (fun x -> print_int x) 10;;
f 12;;
```

What value is printed?

- 5
- 10
- 12
- 27

Closure for `plus_x`

- When `plus_x` was defined, had environment:

 \[\rho_{plus_x} = \{ \ldots, x \rightarrow 12, \ldots \} \]

- Recall: `let plus_x y = y + x`
 is really `let plus_x = fun y -> y + x`

- Closure for `fun y -> y + x`:

 \[<y \rightarrow y + x, \rho_{plus_x}> \]

- Environment just after `plus_x` defined:

 \[\{ plus_x \rightarrow <y \rightarrow y + x, \rho_{plus_x}>, \rho_{plus_x} \} \]

Functions on tuples

```plaintext
# let plus_pair (n,m) = n + m;;
val plus_pair : int * int -> int = <fun>
# plus_pair (3,4);;
- : int = 7
# let double x = (x,x);;
val double : 'a -> 'a * 'a = <fun>
# double 3;;
- : int * int = (3, 3)
# double "hi";;
val double : string -> string * string = <fun>
# double "hi";;
- : string * string = ("hi", "hi")
```
Save the Environment!

- A closure is a pair of an environment and an association of a sequence of variables (the input variables) with an expression (the function body), written:

 \[((v_1,...,v_n) \rightarrow \text{exp}, \rho)\]

- Where \(\rho\) is the environment in effect when the function is defined (for a simple function)

Closure for plus_pair

- Assume \(\rho_{\text{plus_pair}}\) was the environment just before \(\text{plus_pair}\) defined
- Closure for \(\text{fun } (n,m) \rightarrow n + m\):

 \[((n,m) \rightarrow n + m, \rho_{\text{plus_pair}})\]

- Environment just after \(\text{plus_pair}\) defined:

 \(\{\text{plus_pair} \rightarrow ((n,m) \rightarrow n + m, \rho_{\text{plus_pair}})\}\) + \(\rho_{\text{plus_pair}}\)

Your turn now

Try (* 1 *) from HW2

Functions with more than one argument

- # let add_three x y z = x + y + z;;

 val add_three : int -> int -> int -> int = <fun>

- # let t = add_three 6 3 2;;

 val t : int = 11

- # let add_three =
 fun x -> (fun y -> (fun z -> x + y + z));;

 val add_three : int -> int -> int -> int = <fun>

Again, first syntactic sugar for second

Curried vs Uncurried

- Recall

 val add_three : int -> int -> int -> int = <fun>

- How does it differ from

 # let add_triple (u,v,w) = u + v + w;;

 val add_triple : int * int * int -> int = <fun>

- \(\text{add_three}\) is curried;
- \(\text{add_triple}\) is uncurried
Curried vs Uncurried

```ml
# add_triple (6,3,2);;
- : int = 11
# add_triple 5 4;;
Characters 0-10:
  ^^^^^^^^^^^^^
This function is applied to too many arguments,
maybe you forgot a `;
# fun x -> add_triple (5,4,x);;
: int -> int = <fun>
```

Partial application of functions

```ml
let add_three x y z = x + y + z;;
```

```ml
let h = add_three 5 4;;
val h : int -> int = <fun>
# h 3;;
- : int = 12
# h 7;;
- : int = 16
```

Your turn now

Try (* 2 *) from HW2

Caution!
Know what the argument is and what the body is

Functions as arguments

```ml
let thrice f x = f (f (f x));;
```

```ml
let g = thrice plus_two;;
val g : int -> int = <fun>
# g 4;;
- : int = 10
# thrice (fun s -> "Hi! " ^ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"
```

Your turn now

Try Problem 4 on ML1

Evaluating declarations

- Evaluation uses an environment \(\rho \)
- To evaluate a (simple) declaration let \(x = e \)
 - Evaluate expression \(e \) in \(\rho \) to value \(v \)
 - Update \(\rho \) with \(x \) \(v \): \(\{ x \rightarrow v \} + \rho \)
- Update: \(\rho_1 + \rho_2 \) has all the bindings in \(\rho_1 \) and all those in \(\rho_2 \) that are not rebound in \(\rho_1 \)

\[
\{ x \rightarrow 2, y \rightarrow 3, a \rightarrow "hi" \} + \{ y \rightarrow 100, b \rightarrow 6 \} = \{ x \rightarrow 2, y \rightarrow 3, a \rightarrow "hi"\}, b \rightarrow 6 \} \]
Evaluating expressions

- Evaluation uses an environment ρ
- A constant evaluates to itself
- To evaluate an variable, look it up in ρ ($\rho(v)$)
- To evaluate uses of $+$, $-$, etc, eval args, then do operation
- Function expression evaluates to its closure
- To evaluate a local dec: let $x = e_1$ in e_2
 - Eval e_1 to v, eval e_2 using $\{x \to v\} + \rho$

Evaluation of Application with Closures

- In environment ρ, evaluate left term to closure, $c = <(x_1,\ldots,x_n) \to b, \rho>\n- (x_1,\ldots,x_n)$ variables in (first) argument
- Evaluate the right term to values, (v_1,\ldots,v_n)
- Update the environment ρ to $\rho' = \{x_1 \to v_1,\ldots,x_n \to v_n\} + \rho$
- Evaluate body b in environment ρ'

Evaluation of Application of plus_x;;

- Have environment:
 - $\rho = \{\text{plus}_x \to <y \to y + x, \rho_{\text{plus}_x}>, \ldots\}$
 - $\rho_{\text{plus}_x} = \{x \to 12, \ldots\}$
- Eval (plus_x y, ρ) rewrites to
- App ($<y \to y + x, \rho_{\text{plus}_x}>, 3$) rewrites to
- Eval ($y + x$, $\{y \to 3\} + \rho_{\text{plus}_x}$) rewrites to
- Eval (3 + 12, ρ_{plus_x}) = 15

Evaluation of Application of plus_pair

- Assume environment
 - $\rho = \{x \to 3,\ldots,$
 - plus_pair $\to <(n,m) \to n + m, \rho_{\text{plus_pair}}>, \ldots\}$
 - $\rho_{\text{plus_pair}} = \{x \to 12, \ldots\}$
- Eval (plus_pair (4, x), ρ) rewrites to
- App ($<(n,m) \to n + m, \rho_{\text{plus_pair}}>, (4,3)$) =
- Eval (n + m, $\{n \to 4, m \to 3\} + \rho_{\text{plus_pair}}$) =
- Eval (4 + 3, $\{n \to 4, m \to 3\} + \rho_{\text{plus_pair}}$) = 7

Your turn now

Try (* 3 *) from HW2

Closure question

- If we start in an empty environment, and we execute:
 - let $f =$ fun n -> $n + 5;;$
 - (* 0 *)
 - let pair_map g (n,m) = (g n, g m);;
 - let $f =$ pair_map $f;;$
 - let $a =$ f (4,6);;
 - What is the environment at (* 0 *)?
Answer

\[
\text{let } f = \text{fun } n \rightarrow n + 5;;
\]
\[
\rho_0 = \{ f \rightarrow <n \rightarrow n + 5, \{ \} > \}
\]

8/31/15 25

Closure question

- If we start in an empty environment, and we execute:

 \[
 \text{let } f = \text{fun} \rightarrow n + 5;;
 \]

 \[
 \text{let } \text{pair_map} \ g \ (n,m) = (g \ n, g \ m);;
 \]

 (* 1 *)

 \[
 \text{let } f = \text{pair_map} \ f;;
 \]

 \[
 \text{let } a = f \ (4,6);;
 \]

 What is the environment at (* 1 *)?

Answer

\[
\rho_0 = \{ f \rightarrow <n \rightarrow n + 5, \{ \} > \}
\]
\[
\rho_1 = \{ \text{pair_map} \rightarrow <g \rightarrow \text{fun} \ (n,m) \rightarrow (g \ n, g \ m), \}
\]
\[
\{ f \rightarrow <n \rightarrow n + 5, \{ \} > \},
\]
\[
f \rightarrow <n \rightarrow n + 5, \{ \} > \}
\]

8/31/15 26

Closure question

- If we start in an empty environment, and we execute:

 \[
 \text{let } f = \text{fun} \rightarrow n + 5;;
 \]

 \[
 \text{let } \text{pair_map} \ g \ (n,m) = (g \ n, g \ m);;
 \]

 (*) 2 *)

 \[
 \text{let } f = \text{pair_map} \ f;;
 \]

 \[
 \text{let } a = f \ (4,6);;
 \]

 What is the environment at (*) 2 *)?

Answer

\[
\rho_0 = \{ f \rightarrow <n \rightarrow n + 5, \{ \} > \}
\]
\[
\rho_1 = \{ \text{pair_map} \rightarrow <g \rightarrow \text{fun} \ (n,m) \rightarrow (g \ n, g \ m), \rho_0>,
\]
\[
f \rightarrow <n \rightarrow n + 5, \{ \} > \}
\]

8/31/15 27

Evaluate \text{pair_map} \ f

\[
\rho_0 = \{ f \rightarrow <n \rightarrow n + 5, \{ \} > \}
\]
\[
\rho_1 = \{ \text{pair_map} \rightarrow <g \rightarrow \text{fun} \ (n,m) \rightarrow (g \ n, g \ m), \rho_0>,
\]
\[
f \rightarrow <n \rightarrow n + 5, \{ \} > \}
\]

8/31/15 28

Evaluate \text{pair_map} \ f

\[
\rho_0 = \{ f \rightarrow <n \rightarrow n + 5, \{ \} > \}
\]
\[
\rho_1 = \{ \text{pair_map} \rightarrow <g \rightarrow \text{fun} \ (n,m) \rightarrow (g \ n, g \ m), \rho_0>,
\]
\[
f \rightarrow <n \rightarrow n + 5, \{ \} > \}
\]

8/31/15 29

Evaluate \text{pair_map} \ f

\[
\rho_0 = \{ f \rightarrow <n \rightarrow n + 5, \{ \} > \}
\]
\[
\rho_1 = \{ \text{pair_map} \rightarrow <g \rightarrow \text{fun} \ (n,m) \rightarrow (g \ n, g \ m), \rho_0>,
\]
\[
f \rightarrow <n \rightarrow n + 5, \{ \} > \}
\]

8/31/15 30
Evaluate \(\text{pair_map}\ f \)

\[\rho_0 = \{ f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \} \]
\[\rho_1 = \{ \text{pair_map} \rightarrow \langle g \rightarrow \text{fun} (n,m) \rightarrow (g n, g m), \langle \text{fun} (n,m) \rightarrow (g n, g m), \{ \} \rangle \}, \]
\[f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \} \}

\[\text{Eval} (\text{pair_map}\ f, \rho_1) = \text{Eval} (\text{app} \langle g \rightarrow \text{fun} (n,m) \rightarrow (g n, g m), \{ \} \rangle, \rho_0 \rangle, \rho_1) = \]

8/31/15 31

Answer

\[\rho_1 = \{ \text{pair_map} \rightarrow \langle g \rightarrow \text{fun} (n,m) \rightarrow (g n, g m), \{ f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \} \}, \]
\[f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \} \}

let \(f = \text{pair_map} f \);

\[\rho_2 = \{ f \rightarrow \langle (n,m) \rightarrow (g n, g m), \{ g \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \}, \]
\[f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \} \}, \]
\[\text{pair_map} \rightarrow \langle g \rightarrow \text{fun} (n,m) \rightarrow (g n, g m), \{ f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \} \} \}

let \(a = f (4,6) \);

(* 3 *)

What is the environment at (* 3 *)?

8/31/15 33

Final Evaluation?

\[\rho_2 = \{ f \rightarrow \langle (n,m) \rightarrow (g n, g m), \{ g \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \}, \]
\[f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \} \}, \]
\[\text{pair_map} \rightarrow \langle g \rightarrow \text{fun} (n,m) \rightarrow (g n, g m), \{ f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \} \} \}

let \(a = f (4,6) \);

8/31/15 35

Evaluate \(f (4,6) \);

\[\rho_2 = \{ f \rightarrow \langle (n,m) \rightarrow (g n, g m), \{ g \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \}, \]
\[f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \} \}, \]
\[\text{pair_map} \rightarrow \langle g \rightarrow \text{fun} (n,m) \rightarrow (g n, g m), \{ f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \} \} \}

\[\text{Eval} (f (4,6), \rho_2) = \]

8/31/15 36
Evaluate \(f(4,6); \)

\(\rho_2 = \{ f \rightarrow \langle (n,m) \rightarrow (g n, g m), \\
\{ g \rightarrow \langle n \rightarrow n + 5, \{ \} >, \\
\{ f \rightarrow \langle n \rightarrow n + 5, \{ \} >, \\
\text{pair_map} \rightarrow \langle g \rightarrow \text{fun} (n,m) \rightarrow (g n, g m), \\
\{ f \rightarrow \langle n \rightarrow n + 5, \{ \} >, \\
\text{Eval}(f(4,6), \rho_2) = \\
\text{Eval(app}(\langle (n,m) \rightarrow (g n, g m), \\
\{ g \rightarrow \langle n \rightarrow n + 5, \{ \} >, \\
\{ f \rightarrow \langle n \rightarrow n + 5, \{ \} >, \\
\text{Eval}((g n, g m), \{ n \rightarrow 4, m \rightarrow 6 \} + \\
\{ g \rightarrow \langle n \rightarrow n + 5, \{ \} >, \\
\{ f \rightarrow \langle n \rightarrow n + 5, \{ \} >, \\
\text{Eval}(9, 11), \rho_3) = (9, 11) \)

Your turn now

Try \((\ast 4 \ast)\) from HW2

Match Expressions

```ocaml
# let triple_to_pair triple = 
  match triple with 
  (0, x, y) -> (x, y) 
  | (x, 0, y) -> (x, y) 
  | (x, y, _) -> (x, y);; 
val triple_to_pair : int * int * int -> int * int = <fun>
```

Recursive Functions

```ocaml
# let rec factorial n = 
  if n = 0 then 1 else n * factorial (n - 1);; 
val factorial : int -> int = <fun>
# factorial 5;; 
- : int = 120
# (* rec is needed for recursive function declarations *)
```
Your turn now

Try Problem 5 on ML1

Recursion Example

Compute \(n^2 \) recursively using:
\[
 n^2 = (2 \times n - 1) + (n - 1)^2
\]

```ml
# let rec nthsq n =     (* rec for recursion *)
  match n              (* pattern matching for cases *)
  with 0 -> 0                  (* base case *)
  | n -> (2 * n -1)           (* recursive case *)
      + nthsq (n -1);   (* recursive call *)
val nthsq : int -> int = <fun>
#
# nthsq 3;;
- : int = 9
```

Structure of recursion similar to inductive proof

Recursion and Induction

- Base case is the last case; it stops the computation
- Recursive call must be to arguments that are somehow smaller - must progress to base case
- If or match must contain base case
- Failure of these may cause failure of termination

Lists

- First example of a recursive datatype (aka algebraic datatype)
- Unlike tuples, lists are homogeneous in type (all elements same type)

Lists

- List can take one of two forms:
 - Empty list, written `[]`
 - Non-empty list, written `x :: xs`
 - `x` is head element, `xs` is tail list, :: called “cons”
 - Syntactic sugar: `[x] == x :: []`
 - `[x1; x2; ...; xn] == x1 :: x2 :: ... :: xn :: []`

Lists

```ml
# let fib5 = [8;5;3;2;1];;;
val fib5 : int list = [8; 5; 3; 2; 1]
# let fib6 = 13 :: fib5;;
val fib6 : int list = [13; 8; 5; 3; 2; 1]
# (8::3::2::1::[ ]) = fib5;;
- : bool = true
# fib5 @ fib6;;
- : int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1; 1]
```
Lists are Homogeneous

let bad_list = [1; 3.2; 7];;
Characters 19-22:
 let bad_list = [1; 3.2; 7];;
 ^^^
This expression has type float but is here used with type int

Question

- Which one of these lists is invalid?
 1. [2; 3; 4; 6]
 2. [2,3; 4,5; 6,7]
 3. [(2.3,4); (3.2,5); (6,7.2)]
 4. [[“hi”; “there”]; [“wahcha”]; []; [“doin”]]

Answer

- Which one of these lists is invalid?
 1. [2; 3; 4; 6]
 2. [2,3; 4,5; 6,7]
 3. [(2.3,4); (3.2,5); (6,7.2)]
 4. [[“hi”; “there”]; [“wahcha”]; []; [“doin”]]
 - 3 is invalid because of last pair

Functions Over Lists

let rec double_up list =
 match list
 with [] -> [] (* pattern before ->, expression after *)
 | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>
let fib5_2 = double_up fib5;;
val fib5_2 : int list = [8; 8; 5; 5; 3; 3; 2; 2; 1; 1; 1]

let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]

let rec poor_rev list =
 match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]

Functions Over Lists

let rec poor_rev list =
 match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]

Question: Length of list

- Problem: write code for the length of the list
 - How to start?
let length l =
Question: Length of list
Problem: write code for the length of the list
How to start?
let rec length l =
 match l with

What patterns should we match against?
let rec length l =
 match l with [] ->
 | (a :: bs) ->

What result do we give when l is empty?
let rec length l =
 match l with [] -> 0
 | (a :: bs) ->

What result do we give when l is not empty?
let rec length l =
 match l with [] -> 0
 | (a :: bs) -> 1 + length bs
Same Length

- How can we efficiently answer if two lists have the same length?

```
let rec same_length list1 list2 =
    match list1 with
    | [] -> (match list2 with
                | [] -> true
                | (y::ys) -> false)
    | (x::xs) ->
        (match list2 with
           | [] -> false
           | (y::ys) -> same_length xs ys)
```

Higher Order Functions

- A function is higher-order if it takes a function as an argument or returns one as a result.
- Example:

```
# let compose f g = fun x -> f (g x);;
val compose : ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b = <fun>
```

The type ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b is a higher order type because of ('a -> 'b) and ('c -> 'a) and -> 'c -> 'b

Thrice

- Recall:

```
# let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
```

- How do you write thrice with compose?

```
# let thrice f = compose f (compose f f);;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
```

Partial Application

```
# (+);;
- : int -> int -> int = <fun>
# (+) 2 3;;
val plus_two : int -> int = <fun>
# let plus_two = (+) 2;;
val plus_two : int -> int = <fun>
# plus_two 7;;
val plus_two : int -> int = <fun>
```

Partial application also called sectioning
Lambda Lifting

You must remember the rules for evaluation when you use partial application.

```
# let add_two = (+) (print_string "test\n"; 2);;
test
val add_two : int -> int = <fun>
# let add2 = (* lambda lifted *)
    fun x -> (+) (print_string "test\n"; 2) x;;
val add2 : int -> int = <fun>
```

Lambda lifting delayed the evaluation of the argument to (+) until the second argument was supplied.

```
# thrice add_two 5;;
- : int = 11
# thrice add2 5;;
test
test
test
- : int = 11
```

Partial Application and “Unknown Types”

Recall `compose plus_two`:

```
# let f1 = compose plus_two;;
val f1 : ('_a -> int) -> '_a -> int = <fun>
```

Compare to lambda lifted version:

```
# let f2 = fun g -> compose plus_two g;;
val f2 : ('a -> int) -> 'a -> int = <fun>
```

What is the difference?

'_a can only be instantiated once for an expression

```
# f1 plus_two;;
  f1 List.length;;
     ^^^^^^^^^^^
This expression has type 'a list -> int but is here used with type int -> int
```

'a can be repeatedly instantiated

```
# f2 plus_two;;
- : int -> int = <fun>
# f2 List.length;;
- : '_a list -> int = <fun>
```

Functions Over Lists

```
# let rec map f list =
  match list
  with [] -> []
  | (h::t) -> (f h) :: (map f t);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
```

```
# map (fun x -> x - 1) fib6;;
  int list = [12; 7; 4; 2; 1; 0; 0]
```
Iterating over lists

```ocaml
# let rec fold_left f a list =  
  match list 
  with [] -> a 
  | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>
# fold_left  
  (fun () -> print_string)  
  ()  
  ["hi"; "there"];;
- : unit = ()
```

Structural Recursion

- Functions on recursive datatypes (e.g., lists) tend to be recursive.
- Recursion over recursive datatypes generally by structural recursion:
 - Recursive calls made to components of structure of the same recursive type.
 - Base cases of recursive types stop the recursion of the function.

Forward Recursion

- In Structural Recursion, split input into components and (eventually) recurse.
- Forward Recursion form of Structural Recursion:
 - In forward recursion, first call the function recursively on all recursive components, and then build final result from partial results.
 - Wait until whole structure has been traversed to start building answer.

```ocaml
# let rec fold_right f list b =  
  match list 
  with [] -> b 
  | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>
# fold_right  
  (fun s -> fun () -> print_string s)  
  ["hi"; "there"]  
  ();;
therehi- : unit = ()
```

```ocaml
# let rec double_up list =  
  match list 
  with [] -> [] 
  | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>
# let rec poor_rev list =  
  match list 
  with [] -> [] 
  | (x :: xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
```

Forward Recursion: Examples
Encoding Recursion with Fold

```
# let rec append list1 list2 = match list1 with
  [ ] -> list2 | x::xs -> x :: append xs list2;;
val append : 'a list -> 'a list -> 'a list = <fun>
```

Base Case | Operation | Recursive Call

```
# let append list1 list2 =
  fold_right (fun x y -> x :: y) list1 list2;;
val append : 'a list -> 'a list -> 'a list = <fun>
```

```
# append [1;2;3] [4;5;6];;
- : int list = [1; 2; 3; 4; 5; 6]
```

Mapping Recursion

- One common form of structural recursion applies a function to each element in the structure

```
# let rec doubleList list = match list
  with [ ] -> [ ]
  | x::xs -> 2 * x :: doubleList xs;;
val doubleList : int list -> int list = <fun>
```

```
# doubleList [2;3;4];;
- : int list = [4; 6; 8]
```

- Can use the higher-order recursive map function instead of direct recursion

```
# let doubleList list =
  List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
```

```
# doubleList [2;3;4];;
- : int list = [4; 6; 8]
```

Folding Recursion

- Another common form “folds” an operation over the elements of the structure

```
# let rec multList list = match list
  with [ ] -> 1
  | x::xs -> x * multList xs;;
val multList : int list -> int = <fun>
```

```
# multList [2;4;6];;
- : int = 48
```

```
# let multList list =
    List.fold_right
    (fun x -> fun p -> x * p)
    list 1;;
val multList : int list -> int = <fun>
```

```
# multList [2;4;6];;
- : int = 48
```

```
# doubleList [2;3;4];;
- : int list = [4; 6; 8]
```

How long will it take?

- Remember the big-O notation from CS 225 and CS 273
- Question: given input of size \(n \), how long to generate output?
- Express output time in terms of input size, omit constants and take biggest power
How long will it take?

Common big-O times:
- Constant time $O(1)$
- Linear time $O(n)$
- Quadratic time $O(n^2)$
- Exponential time $O(2^n)$

Linear Time
- Expect most list operations to take linear time $O(n)$
- Each step of the recursion can be done in constant time
- Each step makes only one recursive call
- List example: `multList, append`
- Integer example: `factorial`

Quadratic Time
- Each step of the recursion takes time proportional to input
- Each step of the recursion makes only one recursive call.
- List example:

```haskell
# let rec poor_rev list = match list
with [] -> []
  | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
```

Exponential running time
- Hideous running times on input of any size
- Each step of recursion takes constant time
- Each recursion makes two recursive calls
- Easy to write naïve code that is exponential for functions that can be linear

Exponential running time
- `let rec naiveFib n = match n with 0 -> 0 | 1 -> 1 | _ -> naiveFib (n-1) + naiveFib (n-2);;
val naiveFib : int -> int = <fun>

An Important Optimization
- When a function call is made, the return address needs to be saved to the stack so we know to where to return when the call is finished.
- What if f calls g and g calls h, but calling h is the last thing g does (a tail call)?
An Important Optimization

- When a function call is made, the return address needs to be saved to the stack so we know to where to return when the call is finished.
- What if \(f \) calls \(g \) and \(g \) calls \(h \), but calling \(h \) is the last thing \(g \) does (a tail call)?
- Then \(h \) can return directly to \(f \) instead of \(g \).

Tail Recursion

- A recursive program is tail recursive if all recursive calls are tail calls.
- Tail recursive programs may be optimized to be implemented as loops, thus removing the function call overhead for the recursive calls.
- Tail recursion generally requires extra “accumulator” arguments to pass partial results.
- May require an auxiliary function.

Tail Recursion - Example

```ocaml
# let rec rev_aux list revlist = 
  match list with 
  | [] -> revlist 
  | x :: xs -> rev_aux xs (x::revlist);
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

# let rec rev list = rev_aux list [];;
val rev : 'a list -> 'a list = <fun>
```

Comparison

- \(\text{poor} \ [1,2,3] = \)
- \((\text{poor} \ [2,3]) @ [1] = \)
- \(((\text{poor} \ [3]) @ [2]) @ [1] = \)
- \(((\text{poor} \ [3]) @ [2]) @ [1] = \)
- \((3 :: (\text{rev} \ [2])) @ [1] = \)
- \((3 :: (\text{rev} \ [2])) @ [1] = \)
- \((3 :: (\text{rev} \ [2])) @ [1] = \)
- \((3 :: (\text{rev} \ [2])) @ [1] = \)

Folding Functions over Lists

How are the following functions similar?

```ocaml
# let rec sumlist list = match list with 
  | [] -> 0 | x::xs -> x + sumlist xs;;
val sumlist : int list -> int = <fun>
# sumlist [2;3];;
- : int = 9

# let rec prodlist list = match list with 
  | [] -> 1 | x::xs -> x * prodlist xs;;
val prodlist : int list -> int = <fun>
# prodlist [2;3];;
- : int = 24
```
Folding

let rec fold_left f a list = match list
 with [] -> a | (x :: xs) -> fold_left f (f a x) xs;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>

fold_left f a [x_1; x_2;...;x_n] = f(...(f (f a x_1) x_2)...x_n)

let rec fold_right f list b = match list
 with [] -> b | (x :: xs) -> f x (fold_right f xs b);
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

fold_right f [x_1; x_2;...;x_n] b = f x_1(f x_2 (...(f x_n b)...))

Folding - Forward Recursion

let sumlist list = fold_right (+) list 0;;
val sumlist : int list -> int = <fun>

sumlist [2;3;4];;
- : int = 9

let prodlist list = fold_right (*) list 1;;
val prodlist : int list -> int = <fun>

prodlist [2;3;4];;
- : int = 24

Folding - Tail Recursion

- # let rec rev list =
 - fold_left
 - (fun l -> fun x -> x :: l) //comb op
 - [] //accumulator cell

Folding

- Can replace recursion by fold_right in any forward primitive recursive definition
- Primitive recursive means it only recurses on immediate subcomponents of recursive data structure
- Can replace recursion by fold_left in any tail primitive recursive definition